IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v146y2022icp61-70.html
   My bibliography  Save this article

Adaptive meiotic drive in selfing populations with heterozygote advantage

Author

Listed:
  • Brud, Evgeny

Abstract

The egalitarian allotment of gametes to each allele at a locus (Mendel’s law of segregation) is a near-universal phenomenon characterizing inheritance in sexual populations. As exceptions to Mendel’s law are known to occur, one can investigate why non-Mendelian segregation is not more common using modifier theory. Earlier work assuming sex-independent modifier effects in a random mating population with heterozygote advantage concluded that equal segregation is stable over long-term evolution. Subsequent investigation, however, demonstrated that the stability of the Mendelian scheme disappears when sex-specific modifier effects are allowed. Here I derive invasion conditions favoring the repeal of Mendelian law in mixed and obligate selfing populations. Oppositely-directed segregation distortion in the production of male and female gametes is selected for in the presence of overdominant fitness. The conditions are less restrictive than under panmixia in that strong selection can occur even without differential viability of reciprocal heterozygotes (i.e. in the absence of parent-of-origin effects at the overdominant fitness locus). Generalized equilibria are derived for full selfing.

Suggested Citation

  • Brud, Evgeny, 2022. "Adaptive meiotic drive in selfing populations with heterozygote advantage," Theoretical Population Biology, Elsevier, vol. 146(C), pages 61-70.
  • Handle: RePEc:eee:thpobi:v:146:y:2022:i:c:p:61-70
    DOI: 10.1016/j.tpb.2022.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580922000405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2022.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas W. Scott & Stuart A. West, 2019. "Adaptation is maintained by the parliament of genes," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:146:y:2022:i:c:p:61-70. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.