IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v130y2019icp60-73.html
   My bibliography  Save this article

Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition

Author

Listed:
  • Kortessis, Nicholas
  • Chesson, Peter

Abstract

Fluctuating environmental conditions have consequences for the evolution of life histories because they cause fitness variance. This variance can favor risk-spreading strategies, often known as bet-hedging strategies, in which growth or reproduction is spread over time or space, with some costs, but greater certainty of success. An important example is seed dormancy in annual plants, in which some fraction of seed remains dormant at any given germination opportunity with the potential of germinating later when environmental conditions may differ. Previous theory shows that environmental variation is critical for the evolution of dormancy. However, these studies have focused on temporal variation in reproduction, ignoring the strong observed effects of environmental variation on the germination fraction, a major contributor to fitness variance. We ask what effects germination fluctuations have on selection for dormancy by adding germination fluctuations to existing density-independent (d.i.) and density-dependent (d.d.) models of annual plant dynamics, extending previous analyses by including temporally fluctuating germination. Specifically, we ask how germination variance affects selection on the temporal average germination fraction, here used to define dormancy. When present alone, or when independently varying with other fitness components, germination fluctuations do not affect selection for dormancy in the d.i. model, despite generating fitness variance because this variance contribution is not reduced by higher dormancy. Germination fluctuations have strong effects in the d.d. model, favoring dormancy when present either alone or coupled with variation affecting plant growth. This is because germination variation causes seedling density to vary, which causes variable reproduction through variable intraspecific competition. Dormancy is advantaged under variable reproduction because it creates a more convex relationship between population growth and reproduction leading to benefits from nonlinear averaging. Predictive germination, a positive statistical association between germination and growth, weakens selection for dormancy under strong competition and strengthens it when competition is weak. Our results suggest that variable germination is a potential explanation for high levels of dormancy observed in nature, with implications for life-history theory for fluctuating environments.

Suggested Citation

  • Kortessis, Nicholas & Chesson, Peter, 2019. "Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition," Theoretical Population Biology, Elsevier, vol. 130(C), pages 60-73.
  • Handle: RePEc:eee:thpobi:v:130:y:2019:i:c:p:60-73
    DOI: 10.1016/j.tpb.2019.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580919301753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2019.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    2. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stump, Simon Maccracken & Chesson, Peter, 2017. "How optimally foraging predators promote prey coexistence in a variable environment," Theoretical Population Biology, Elsevier, vol. 114(C), pages 40-58.
    2. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.
    3. Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.
    4. Szabó, Péter, 2016. "Ideal free distribution of metabolic activity: Implications of seasonal metabolic-activity patterns on competitive coexistence," Theoretical Population Biology, Elsevier, vol. 111(C), pages 1-8.
    5. Song, Zhiyuan & Feldman, Marcus W., 2013. "Plant–animal mutualism in biological markets: Evolutionary and ecological dynamics driven by non-heritable phenotypic variance," Theoretical Population Biology, Elsevier, vol. 88(C), pages 20-30.
    6. Han, Zhi-Quan & Liu, Tong & Sun, QinMing & Li, Ru & Xie, Jiang-Bo & Li, Bai-Lian, 2014. "Application of compound interest laws in biology: Reunification of existing models to develop seed bank dynamics model of annual plants," Ecological Modelling, Elsevier, vol. 278(C), pages 67-73.
    7. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:130:y:2019:i:c:p:60-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.