IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v124y2018icp16-30.html
   My bibliography  Save this article

Haploids, polymorphisms and fluctuating selection

Author

Listed:
  • Dean, Antony M.

Abstract

I analyze the joint impact of directional and fluctuating selection with reversible mutation in finite bi-allelic haploid populations using diffusion approximations of the Moran and chemostat models. Results differ dramatically from those of the classic Wright–Fisher diffusion. There, a strong dispersive effect attributable to fluctuating selection dissipates nascent polymorphisms promoted by a relatively weak emergent frequency dependent selective effect. The dispersive effect in the Moran diffusion with fluctuations every birth–death event is trivial. The same frequency dependent selective effect now dominates and polymorphism is promoted. The dispersive effect in the chemostat diffusion with fluctuations every generation is identical to that in the Wright–Fisher diffusion. Nevertheless, polymorphism is again promoted because the emergent frequency dependent effect is doubled, an effect attributable to geometric reproduction within generations. Fluctuating selection in the Moran and chemostat diffusions can also promote bi-allelic polymorphisms when one allele confers a net benefit. Rapid fluctuations within generations are highly effective at promoting polymorphism in large populations. The bi-allelic distribution is approximately Gaussian but becomes uniform and then U-shaped as the frequency of environmental fluctuations decreases to once a generation and then once every multiple generations. Trade-offs (negative correlations in fitness) help promote polymorphisms but are not essential. In all three models the frequency dependent effect raises the probability of ultimate fixation of new alleles, but less effectively in the Wright–Fisher diffusion. Individual-based forward simulations confirm the calculations.

Suggested Citation

  • Dean, Antony M., 2018. "Haploids, polymorphisms and fluctuating selection," Theoretical Population Biology, Elsevier, vol. 124(C), pages 16-30.
  • Handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:16-30
    DOI: 10.1016/j.tpb.2018.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580918301400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:16-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.