IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v115y2017icp35-44.html
   My bibliography  Save this article

Population-genetic models of sex-limited genomic imprinting

Author

Listed:
  • Kelly, S. Thomas
  • Spencer, Hamish G.

Abstract

Genomic imprinting is a form of epigenetic modification involving parent-of-origin-dependent gene expression, usually the inactivation of one gene copy in some tissues, at least, for some part of the diploid life cycle. Occurring at a number of loci in mammals and flowering plants, this mode of non-Mendelian expression can be viewed more generally as parentally-specific differential gene expression. The effects of natural selection on genetic variation at imprinted loci have previously been examined in a several population-genetic models. Here we expand the existing one-locus, two-allele population-genetic models of viability selection with genomic imprinting to include sex-limited imprinting, i.e., imprinted expression occurring only in one sex, and differential viability between the sexes. We first consider models of complete inactivation of either parental allele and these models are subsequently generalized to incorporate differential expression. Stable polymorphic equilibrium was possible without heterozygote advantage as observed in some prior models of imprinting in both sexes. In contrast to these latter models, in the sex-limited case it was critical whether the paternally inherited or maternally inherited allele was inactivated. The parental origin of inactivated alleles had a different impact on how the population responded to the different selection pressures between the sexes. Under the same fitness parameters, imprinting in the other sex altered the number of possible equilibrium states and their stability. When the parental origin of imprinted alleles and the sex in which they are inactive differ, an allele cannot be inactivated in consecutive generations. The system dynamics became more complex with more equilibrium points emerging. Our results show that selection can interact with epigenetic factors to maintain genetic variation in previously unanticipated ways.

Suggested Citation

  • Kelly, S. Thomas & Spencer, Hamish G., 2017. "Population-genetic models of sex-limited genomic imprinting," Theoretical Population Biology, Elsevier, vol. 115(C), pages 35-44.
  • Handle: RePEc:eee:thpobi:v:115:y:2017:i:c:p:35-44
    DOI: 10.1016/j.tpb.2017.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580916300661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2017.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:115:y:2017:i:c:p:35-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.