IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v101y2015icp31-39.html
   My bibliography  Save this article

Cyclical succession in grazed ecosystems: The importance of interactions between different-sized herbivores and different-sized predators

Author

Listed:
  • Ruifrok, Jasper L.
  • Janzen, Thijs
  • Kuijper, Dries P.J.
  • Rietkerk, Max
  • Olff, Han
  • Smit, Christian

Abstract

Body size of vertebrate herbivores is strongly linked to other life history traits, most notably (1) tolerance of low quality forage and (2) vulnerability to predation, which both impact the composition and dynamics of natural communities. However, no study has thus far explored how the combination of these two body-size related traits affects the long-term composition and dynamics of the herbivore and plant communities. We made a simple model of ordinary differential equations and simulated a grassland system with three herbivore species (small, medium, large) and two predator species (small, large) to investigate how the combination of low-quality tolerance and predation-vulnerability structure the herbivore and plant community. We found that facilitation and competition between different-sized herbivores and predation by especially small predators stimulate coexistence among herbivore species. Furthermore, the interaction between different-sized herbivores and predators generated cyclical succession in the plant community, i.e. alternating periods of short vegetation dominated by high-quality plants, with periods of tall vegetation dominated by low-quality plants. Our results suggest that cyclical succession in plant communities is more likely to occur when a predator predominantly preys on small herbivore species. Large predators also play an important role, as their addition relaxed the set of conditions under which cyclical succession occurred. Consequently, our model predictions suggest that a diverse predator community plays an important role in the long-term dynamics and maintenance of diversity in both the herbivore and plant community.

Suggested Citation

  • Ruifrok, Jasper L. & Janzen, Thijs & Kuijper, Dries P.J. & Rietkerk, Max & Olff, Han & Smit, Christian, 2015. "Cyclical succession in grazed ecosystems: The importance of interactions between different-sized herbivores and different-sized predators," Theoretical Population Biology, Elsevier, vol. 101(C), pages 31-39.
  • Handle: RePEc:eee:thpobi:v:101:y:2015:i:c:p:31-39
    DOI: 10.1016/j.tpb.2015.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915000155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    2. Mark E. Ritchie & Han Olff, 1999. "Spatial scaling laws yield a synthetic theory of biodiversity," Nature, Nature, vol. 400(6744), pages 557-560, August.
    3. Emma Marris, 2009. "Conservation biology: Reflecting the past," Nature, Nature, vol. 462(7269), pages 30-32, November.
    4. Han Olff & Mark E. Ritchie & Herbert H. T. Prins, 2002. "Global environmental controls of diversity in large herbivores," Nature, Nature, vol. 415(6874), pages 901-904, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szolnoki, Attila & Chen, Xiaojie, 2020. "Strategy dependent learning activity in cyclic dominant systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Ranjan, Ravi & Bagchi, Sumanta, 2016. "Functional response and body size in consumer–resource interactions: Unimodality favors facilitation," Theoretical Population Biology, Elsevier, vol. 110(C), pages 25-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    2. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    3. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    4. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    5. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    6. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    7. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    8. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    10. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    11. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    12. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    13. Richard L. Gruner & Damien Power, 2023. "Conceptual wanderlust: How to develop creative supply chain theory with analogies," Journal of Supply Chain Management, Institute for Supply Management, vol. 59(4), pages 3-21, October.
    14. Janssen, Marco A. & Anderies, John M. & Walker, Brian H., 2004. "Robust strategies for managing rangelands with multiple stable attractors," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 140-162, January.
    15. Admiraal, Jeroen F. & Wossink, Ada & de Groot, Wouter T. & de Snoo, Geert R., 2013. "More than total economic value: How to combine economic valuation of biodiversity with ecological resilience," Ecological Economics, Elsevier, vol. 89(C), pages 115-122.
    16. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    17. Tomczak, M.T. & Niiranen, S. & Hjerne, O. & Blenckner, T., 2012. "Ecosystem flow dynamics in the Baltic Proper—Using a multi-trophic dataset as a basis for food–web modelling," Ecological Modelling, Elsevier, vol. 230(C), pages 123-147.
    18. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.
    19. Christian Kiffner & John Kioko & Cecilia Leweri & Stefan Krause, 2014. "Seasonal Patterns of Mixed Species Groups in Large East African Mammals," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    20. Bashkirtseva, Irina & Ryashko, Lev, 2017. "How environmental noise can contract and destroy a persistence zone in population models with Allee effect," Theoretical Population Biology, Elsevier, vol. 115(C), pages 61-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:101:y:2015:i:c:p:31-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.