IDEAS home Printed from https://ideas.repec.org/a/eee/telpol/v42y2018i5p409-420.html
   My bibliography  Save this article

A socio-technical analysis of China's cybersecurity policy: Towards delivering trusted e-government services

Author

Listed:
  • Zhang, Huiping
  • Tang, Zhiwei
  • Jayakar, Krishna

Abstract

This paper uses a socio-technical analysis framework to examine the potential impact of the 2016 Cybersecurity Law on e-government services in China. Based on prior survey results in the literature, the factors that affect user responses to e-government portals are identified. It then reviews the provisions of the Cybersecurity Law and identifies the factors that are likely to affect e-government operations. Open-ended interviews with cybersecurity and e-government experts are used to assess the possible impacts of the law.

Suggested Citation

  • Zhang, Huiping & Tang, Zhiwei & Jayakar, Krishna, 2018. "A socio-technical analysis of China's cybersecurity policy: Towards delivering trusted e-government services," Telecommunications Policy, Elsevier, vol. 42(5), pages 409-420.
  • Handle: RePEc:eee:telpol:v:42:y:2018:i:5:p:409-420
    DOI: 10.1016/j.telpol.2018.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308596117304597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.telpol.2018.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Hongbum & Shin, Dong-Hee & Lee, Daeho, 2015. "A socio-technical analysis of software policy in Korea: Towards a central role for building ICT ecosystems," Telecommunications Policy, Elsevier, vol. 39(11), pages 944-956.
    2. Wu, Yanfang & Lau, Tuenyu & Atkin, David J. & Lin, Carolyn A., 2011. "A comparative study of online privacy regulations in the U.S. and China," Telecommunications Policy, Elsevier, vol. 35(7), pages 603-616, August.
    3. Fuenfschilling, Lea & Truffer, Bernhard, 2016. "The interplay of institutions, actors and technologies in socio-technical systems — An analysis of transformations in the Australian urban water sector," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 298-312.
    4. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    5. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    6. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    7. Kompella, Lakshminarayana, 2017. "E-Governance systems as socio-technical transitions using multi-level perspective with case studies," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chae, Bongsug (Kevin), 2019. "The evolution of the Internet of Things (IoT): A computational text analysis," Telecommunications Policy, Elsevier, vol. 43(10).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    3. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.
    4. Fatih Canıtez, 2021. "The Adoption of Autonomous Vehicles: A Socio-Technical Transition Perspective," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(2), pages 143-162, December.
    5. Kivimaa, Paula & Rogge, Karoline S., 2022. "Interplay of policy experimentation and institutional change in sustainability transitions: The case of mobility as a service in Finland," Research Policy, Elsevier, vol. 51(1).
    6. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    7. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    8. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    9. Contesse, Maria & Duncan, Jessica & Legun, Katharine & Klerkx, Laurens, 2021. "Unravelling non-human agency in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    10. Helgegren, Ida & McConville, Jennifer & Landaeta, Graciela & Rauch, Sebastien, 2021. "A multiple regime analysis of the water and sanitation sectors in the Kanata metropolitan region, Bolivia," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    11. Satya Widya Yudha & Benny Tjahjono & Philip Longhurst, 2022. "Sustainable Transition from Fossil Fuel to Geothermal Energy: A Multi-Level Perspective Approach," Energies, MDPI, vol. 15(19), pages 1-22, October.
    12. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    13. Bolton, Ronan & Hannon, Matthew, 2016. "Governing sustainability transitions through business model innovation: Towards a systems understanding," Research Policy, Elsevier, vol. 45(9), pages 1731-1742.
    14. Marcel Bednarz & Tom Broekel, 2020. "Pulled or pushed? The spatial diffusion of wind energy between local demand and supply," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(4), pages 893-916.
    15. Weking, Jörg & Desouza, Kevin C. & Fielt, Erwin & Kowalkiewicz, Marek, 2023. "Metaverse-enabled entrepreneurship," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    16. Pradeep Racherla & Munir Mandviwalla, 2013. "Moving from Access to Use of the Information Infrastructure: A Multilevel Sociotechnical Framework," Information Systems Research, INFORMS, vol. 24(3), pages 709-730, September.
    17. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    18. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    19. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    20. Chad M. Baum, 2013. "Mass-Produced Food: the Rise and Fall of the Promise of Health and Safety," Papers on Economics and Evolution 2013-03, Philipps University Marburg, Department of Geography.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:telpol:v:42:y:2018:i:5:p:409-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30471/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.