IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v80y2013i6p1222-1231.html
   My bibliography  Save this article

An examination of factors affecting accuracy in technology forecasts

Author

Listed:
  • Fye, Shannon R.
  • Charbonneau, Steven M.
  • Hay, Jason W.
  • Mullins, Carie A.

Abstract

Private and public organizations use forecasts to inform a number of decisions, including decisions on product development, competition, and technology investments. We evaluated technological forecasts to determine how forecast methodology and eight other attributes influence accuracy. We also evaluated the degree of interpretation required to extract measurable data from forecasts. We found that, of the nine attributes, only methodology and time horizon had a statistically significant influence on accuracy. Forecasts using quantitative methods were more accurate than forecasts using qualitative methods, and forecasts predicting shorter time horizons were more accurate that those predicting longer time horizons. While quantitative methods produced the most accurate forecasts, expert sourcing methods produced the highest number of forecasts whose events had been realized, indicating that experts are best at predicting if an event will occur, while quantitative methods are best at predicting when. We also observed that forecasts are as likely to overestimate how long it will take for a predicted event to occur as they are to underestimate the time required for a prediction to come to pass. Additionally, forecasts about computers and autonomous or robotic technologies were more accurate than those about other technologies, an observation not explained by the data set. Finally, forecasts obtained from government documents required more interpretation than those derived from other sources, though they had similar success rates.

Suggested Citation

  • Fye, Shannon R. & Charbonneau, Steven M. & Hay, Jason W. & Mullins, Carie A., 2013. "An examination of factors affecting accuracy in technology forecasts," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1222-1231.
  • Handle: RePEc:eee:tefoso:v:80:y:2013:i:6:p:1222-1231
    DOI: 10.1016/j.techfore.2012.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162512002818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2012.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Hua & Cai, Jia-Wei & Yang, Dong-Wei & Wei, Yi-Ming, 2016. "Why did the historical energy forecasting succeed or fail? A case study on IEA's projection," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 90-96.
    2. André Souza Oliveira & Raphael Oliveira dos Santos & Bruno Caetano dos Santos Silva & Lilian Lefol Nani Guarieiro & Matthias Angerhausen & Uwe Reisgen & Renelson Ribeiro Sampaio & Bruna Aparecida Souz, 2021. "A Detailed Forecast of the Technologies Based on Lifecycle Analysis of GMAW and CMT Welding Processes," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    3. Bonaccorsi, Andrea & Apreda, Riccardo & Fantoni, Gualtiero, 2020. "Expert biases in technology foresight. Why they are a problem and how to mitigate them," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. Harwood, Stephen & Eaves, Sally, 2020. "Conceptualising technology, its development and future: The six genres of technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    5. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Apreda, Riccardo & Bonaccorsi, Andrea & dell'Orletta, Felice & Fantoni, Gualtiero, 2019. "Expert forecast and realized outcomes in technology foresight," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 277-288.
    7. Kott, Alexander & Perconti, Philip, 2018. "Long-term forecasts of military technologies for a 20–30 year horizon: An empirical assessment of accuracy," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 272-279.
    8. June Young Lee & Sejung Ahn & Dohyun Kim, 2021. "Deep learning-based prediction of future growth potential of technologies," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
    9. André Souza Oliveira & Bruno Caetano dos Santos Silva & Cristiano Vasconcellos Ferreira & Renelson Ribeiro Sampaio & Bruna Aparecida Souza Machado & Rodrigo Santiago Coelho, 2021. "Adding Technology Sustainability Evaluation to Product Development: A Proposed Methodology and an Assessment Model," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    10. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:80:y:2013:i:6:p:1222-1231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.