IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v212y2025ics0040162524007480.html
   My bibliography  Save this article

Do you believe it? Examining user engagement with fake news on social media platforms

Author

Listed:
  • Chaudhuri, Neha
  • Gupta, Gaurav
  • Popovič, Aleš

Abstract

The proliferation of fake news on social media platforms makes it necessary to investigate how news content and user comments can influence user engagement. This study analyzes a robust dataset of 600 fake news posts on Facebook and 760,000 associated user reactions and comments. Employing topic modeling and regression reveals how content and social response characteristics interact to predict engagement. Analysis of textual, rhetorical, semantic, emotional, contextual, and source-based features provides a comprehensive methodology for modeling fake news dissemination. Results demonstrate multimedia inclusion, source credibility, ease of reading, political and technological topics, positive/anticipatory emotions, creator status, and comment deviation most strongly predict reactions, shares, and comments. The inclusion of 47 statistically significant interaction terms substantially improves regression fit and predictive accuracy. The random forest model achieves the highest cross-validation performance, demonstrating machine learning's capability to model fake news engagement's intricacies. These rigorous, data-driven findings provide important insights into engagement drivers and practical tools to mitigate fake news spread. The multidimensional feature set and predictive modeling approach provide a powerful methodology for decoding complex user-news dynamics. This study contributes to a better understanding of how fake news content and social contexts interact to engage users, empowering platforms, regulators, and researchers to counteract fake news.

Suggested Citation

  • Chaudhuri, Neha & Gupta, Gaurav & Popovič, Aleš, 2025. "Do you believe it? Examining user engagement with fake news on social media platforms," Technological Forecasting and Social Change, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:tefoso:v:212:y:2025:i:c:s0040162524007480
    DOI: 10.1016/j.techfore.2024.123950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524007480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:212:y:2025:i:c:s0040162524007480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.