From technology opportunities to ideas generation via cross-cutting patent analysis: Application of generative topographic mapping and link prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2023.122565
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liao, Haojie & Chen, Yuqiang & Tan, RongYong & Chen, Yuling & Wei, Xiaoyu & Yang, Hongmei, 2023. "Can natural resource rent, technological innovation, renewable energy, and financial development ease China's environmental pollution burden? New evidence from the nonlinear-autoregressive distributiv," Resources Policy, Elsevier, vol. 84(C).
- Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
- Mi Zou & Peng Liu & Xuan Wu & Wei Zhou & Yuan Jin & Meiqi Xu, 2023. "Cognitive Characteristics of an Innovation Team and Collaborative Innovation Performance: The Mediating Role of Cooperative Behavior and the Moderating Role of Team Innovation Efficacy," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
- Ma, Binfeng & Wang, Xiaofang, 2023. "How does green floating bond and financial sector readiness promote green economic growth evidence from China," Resources Policy, Elsevier, vol. 85(PB).
- Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
- Lamei, Yin & Zhou, Yue & Shan, Liu, 2023. "Environmental efficiency, climate innovation, and resource rent in ChinaŹ¼s SDGs: Insights from quantile regressions," Resources Policy, Elsevier, vol. 86(PA).
More about this item
Keywords
Patent analysis; Technology opportunity analysis; Idea generation; Generative topographic mapping; Link prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:192:y:2023:i:c:s0040162523002500. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.