The science base of renewables
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2020.120121
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014.
"Knowledge spillovers from clean and dirty technologies,"
LSE Research Online Documents on Economics
60501, London School of Economics and Political Science, LSE Library.
- Antoine Dechezlepretre, Ralf Martin, Myra Mohnen, 2017. "Knowledge Spillovers from clean and dirty technologies," GRI Working Papers 135, Grantham Research Institute on Climate Change and the Environment.
- Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, 2014. "Knowledge Spillovers from Clean and Dirty Technologies," CEP Discussion Papers dp1300, Centre for Economic Performance, LSE.
- Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
- van Vianen, B. G. & Moed, H. F. & van Raan, A. F. J., 1990. "An exploration of the science base of recent technology," Research Policy, Elsevier, vol. 19(1), pages 61-81, February.
- Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020.
"Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?,"
Research Policy, Elsevier, vol. 49(2).
- Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2018. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," SPRU Working Paper Series 2018-11, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2019. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," SEEDS Working Papers 0819, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2019.
- Markard, Jochen & Truffer, Bernhard, 2006. "Innovation processes in large technical systems: Market liberalization as a driver for radical change?," Research Policy, Elsevier, vol. 35(5), pages 609-625, June.
- Mansfield, Edwin, 1995. "Academic Research Underlying Industrial Innovations:," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 55-65, February.
- Dosi, Giovanni, 1993.
"Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change,"
Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
- Dosi, Giovanni, 1982. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 11(3), pages 147-162, June.
- Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
- Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
- Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016.
"Measuring technological novelty with patent-based indicators,"
Research Policy, Elsevier, vol. 45(3), pages 707-723.
- Dennis Verhoeven & Jurriën Bakker & Reinhilde Veugelers, 2015. "Measuring technological novelty with patent-based indicators," Working Papers of Department of Management, Strategy and Innovation, Leuven 501835, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
- Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
- McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
- Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
- Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
- Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
- Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
- Chris Freeman & Luc Soete, 1997. "The Economics of Industrial Innovation, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262061953, April.
- Mariana Mazzucato, 2016. "From market fixing to market-creating: a new framework for innovation policy," Industry and Innovation, Taylor & Francis Journals, vol. 23(2), pages 140-156, February.
- Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
- Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
- Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
- Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
- Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gnekpe, Christian & Plantec, Quentin, 2023. "Regulatory push-pull and technological knowledge dynamics of circular economy innovation," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Hötte, Kerstin & Jee, Su Jung, 2022.
"Knowledge for a warmer world: A patent analysis of climate change adaptation technologies,"
Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Hötte, Kerstin & Jee, Su Jung, 2021. "Knowledge for a warmer world: a patent analysis of climate change adaptation technologies," INET Oxford Working Papers 2021-19, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Kerstin Hotte & Su Jung Jee, 2021. "Knowledge for a warmer world: a patent analysis of climate change adaptation technologies," Papers 2108.03722, arXiv.org, revised Apr 2022.
- Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021.
"The rise of science in low-carbon energy technologies,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Kerstin Hotte & Anton Pichler & Franc{c}ois Lafond, 2020. "The rise of science in low-carbon energy technologies," Papers 2004.09959, arXiv.org, revised Sep 2020.
- Grunevald, Isabel & Kipper, Liane Mahlmann & Ribas Moraes, Jorge Andre & Haupt, Leandro, 2023. "Scientific contributions on cleaner production through the use of patent information: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Jaehyuk Park, 2024. "Analyzing the direct role of governmental organizations in artificial intelligence innovation," The Journal of Technology Transfer, Springer, vol. 49(2), pages 437-465, April.
- Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
- P. G. J. Persoon & R. N. A. Bekkers & F. Alkemade, 2021. "The Knowledge Mobility of Renewable Energy Technology," Papers 2106.10474, arXiv.org, revised Sep 2021.
- Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2022. "The knowledge mobility of Renewable Energy Technology," Energy Policy, Elsevier, vol. 161(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
- Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
- Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
- Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
- Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020.
"The division of labour between academia and industry for the generation of radical inventions,"
The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
- Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2017. "The division of labour between academia and industry for the generation of radical inventions," SEEDS Working Papers 0817, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2017.
- Martin Meyer & Kevin Grant & Piera Morlacchi & Dagmara Weckowska, 2014. "Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 151-174, April.
- Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
- Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Stephan, Annegret & Schmidt, Tobias S. & Bening, Catharina R. & Hoffmann, Volker H., 2017. "The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan," Research Policy, Elsevier, vol. 46(4), pages 709-723.
- Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Naomi Fukuzawa & Takanori Ida, 2016. "Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: the case of Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 629-644, February.
- Chul Lee & Gunno Park & Jina Kang, 2018. "The impact of convergence between science and technology on innovation," The Journal of Technology Transfer, Springer, vol. 43(2), pages 522-544, April.
- Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
- Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
- Zhao Qu & Shanshan Zhang, 2020. "References to literature from the business sector in patent documents: a case study of charging technologies for electric vehicles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 867-886, August.
- Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021.
"The rise of science in low-carbon energy technologies,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Kerstin Hotte & Anton Pichler & Franc{c}ois Lafond, 2020. "The rise of science in low-carbon energy technologies," Papers 2004.09959, arXiv.org, revised Sep 2020.
- Joaquín M. Azagra-Caro, 2012.
"Access to universities’ public knowledge: who’s more nationalist?,"
Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 671-691, June.
- Azagra-Caro, JoaquÃn M., 2011. "Access to universities' public knowledge: Who's more nationalist?," INGENIO (CSIC-UPV) Working Paper Series 201102, INGENIO (CSIC-UPV), revised 10 Feb 2012.
- Sofia Patsali, 2021. "University Procurement-led Innovation," GREDEG Working Papers 2021-13, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
- Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
- Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
More about this item
Keywords
Renewables; Science base; Patents; Non-patent literature;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520309471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.