IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v100y2015icp267-276.html
   My bibliography  Save this article

Electricity portfolio innovation for energy security: The case of carbon constrained China

Author

Listed:
  • Chalvatzis, Konstantinos J.
  • Rubel, Keagan

Abstract

China's energy sector is under pressure to achieve secure and affordable supply and a clear decarbonisation path. We examine the longitudinal trajectory of the Chinese electricity supply security and model the near future supply security based on the 12th 5Year Plan. Our approach combines the Shannon–Wiener, Herfindahl–Hirschman and electricity import dependence indices for supply security appraisal. We find that electricity portfolio innovation allows China to provide secure energy supply despite increasing import dependence. It is argued that long-term aggressive deployment of renewable energy will unblock China's coal-biased technological lock-in and increase supply security in all fronts. However, reduced supply diversity in China during the 1990s will not recover until after 2020s due to the long-term coal lock-in that can threaten to hold China back from realising its full potential.

Suggested Citation

  • Chalvatzis, Konstantinos J. & Rubel, Keagan, 2015. "Electricity portfolio innovation for energy security: The case of carbon constrained China," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 267-276.
  • Handle: RePEc:eee:tefoso:v:100:y:2015:i:c:p:267-276
    DOI: 10.1016/j.techfore.2015.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smeets, Niels, 2017. "Similar goals, divergent motives. The enabling and constraining factors of Russia's capacity-based renewable energy support scheme," Energy Policy, Elsevier, vol. 101(C), pages 138-149.
    2. Wang, Jun & Ghosh, Sudeshna & Olayinka, Olohunlana Aminat & Doğan, Buhari & Shah, Muhammad Ibrahim & Zhong, Kaiyang, 2022. "Achieving energy security amidst the world uncertainty in newly industrialized economies: The role of technological advancement," Energy, Elsevier, vol. 261(PB).
    3. Chalvatzis, Konstantinos J. & Malekpoor, Hanif & Mishra, Nishikant & Lettice, Fiona & Choudhary, Sonal, 2019. "Sustainable resource allocation for power generation: The role of big data in enabling interindustry architectural innovation," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 381-393.
    4. Satya Widya Yudha & Benny Tjahjono & Athanasios Kolios, 2018. "A PESTLE Policy Mapping and Stakeholder Analysis of Indonesia’s Fossil Fuel Energy Industry," Energies, MDPI, vol. 11(5), pages 1-22, May.
    5. Pappas, Dimitrios & Chalvatzis, Konstantinos J. & Guan, Dabo & Ioannidis, Alexis, 2018. "Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia," Applied Energy, Elsevier, vol. 225(C), pages 183-194.
    6. Chalvatzis, Konstantinos J. & Ioannidis, Alexis, 2017. "Energy supply security in the EU: Benchmarking diversity and dependence of primary energy," Applied Energy, Elsevier, vol. 207(C), pages 465-476.
    7. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    8. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    9. Ghosh, Indranil & Jana, Rabin K., 2024. "Clean energy stock price forecasting and response to macroeconomic variables: A novel framework using Facebook's Prophet, NeuralProphet and explainable AI," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    10. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Amar Ramudhin, 2019. "A hybrid approach of VIKOR and bi-objective integer linear programming for electrification planning in a disaster relief camp," Annals of Operations Research, Springer, vol. 283(1), pages 443-469, December.
    11. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2024. "Mutual conversion mechanisms for environmental interest products to jointly enhance synergistic effect between power, CET and TGC markets in China," Energy Economics, Elsevier, vol. 131(C).
    12. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    13. Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    14. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    15. Dharfizi, Awang Dzul Hashriq & Ghani, Ahmad Bashawir Abdul & Islam, Rabiul, 2020. "Evaluating Malaysia's fuel diversification strategies 1981–2016," Energy Policy, Elsevier, vol. 137(C).
    16. Wang, Na & Fu, Xiaodong & Wang, Shaobin, 2022. "Spatial-temporal variation and coupling analysis of residential energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 309(C).
    17. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    18. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    19. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Mukesh Kumar Mehlawat & Dimitrios Zafirakis & Malin Song, 2018. "Integrated grey relational analysis and multi objective grey linear programming for sustainable electricity generation planning," Annals of Operations Research, Springer, vol. 269(1), pages 475-503, October.
    20. Li, Xin & Chalvatzis, Konstantinos J. & Pappas, Dimitrios, 2018. "Life cycle greenhouse gas emissions from power generation in China’s provinces in 2020," Applied Energy, Elsevier, vol. 223(C), pages 93-102.
    21. Kim, Yeong Jae & Cho, Seong-Hoon & Sharma, Bijay P., 2021. "Constructing efficient portfolios of low-carbon technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    22. Vafadarnikjoo, Amin & Tavana, Madjid & Chalvatzis, Konstantinos & Botelho, Tiago, 2022. "A socio-economic and environmental vulnerability assessment model with causal relationships in electric power supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:100:y:2015:i:c:p:267-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.