IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v99y2015icp61-69.html
   My bibliography  Save this article

On some spectral properties of large block Laplacian random matrices

Author

Listed:
  • Ding, Xue

Abstract

In this paper, we investigate the spectral properties of the large block Laplacian random matrices when the blocks are general rectangular matrices. Under some moment assumptions of the underlying distributions, we study the convergence of the empirical spectral distribution (ESD) of the large block Laplacian random matrices.

Suggested Citation

  • Ding, Xue, 2015. "On some spectral properties of large block Laplacian random matrices," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 61-69.
  • Handle: RePEc:eee:stapro:v:99:y:2015:i:c:p:61-69
    DOI: 10.1016/j.spl.2015.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215000115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, Riddhipratim & Bose, Arup & Ganguly, Shirshendu & Hazra, Rajat Subhra, 2012. "Limiting spectral distribution of block matrices with Toeplitz block structure," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1430-1438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanders, Jaron & Van Werde, Alexander, 2023. "Singular value distribution of dense random matrices with block Markovian dependence," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 453-504.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debapratim Banerjee & Arup Bose, 2016. "Bulk behaviour of some patterned block matrices," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(2), pages 273-289, June.
    2. Philippe Loubaton, 2016. "On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1339-1443, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:99:y:2015:i:c:p:61-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.