IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v97y2015icp25-31.html
   My bibliography  Save this article

Stochastic comparisons of parallel systems with exponentiated Weibull components

Author

Listed:
  • Fang, Longxiang
  • Zhang, Xinsheng

Abstract

The exponentiated Weibull (EW) distribution is the first generalization of the two-parameter Weibull distribution to accommodate nonmonotone hazard rates, including the bathtub shaped hazard rate. In this paper, we discuss stochastic comparisons of parallel systems with exponentiated Weibull components in terms of the usual stochastic order, dispersive order and the likelihood ratio order. We give some sufficient conditions for stochastic comparisons between lifetimes of parallel systems.

Suggested Citation

  • Fang, Longxiang & Zhang, Xinsheng, 2015. "Stochastic comparisons of parallel systems with exponentiated Weibull components," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 25-31.
  • Handle: RePEc:eee:stapro:v:97:y:2015:i:c:p:25-31
    DOI: 10.1016/j.spl.2014.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214003666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
    2. S. Gurler, 2012. "On residual lifetimes in sequential (n − k + 1)-out-of-n systems," Statistical Papers, Springer, vol. 53(1), pages 23-31, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amarjit Kundu & Shovan Chowdhury, 2019. "Ordering properties of the largest order statistics from Kumaraswamy-G models under random shocks," Working papers 297, Indian Institute of Management Kozhikode.
    2. Shovan Chowdhury & Amarjit Kundu, 2016. "Stochastic Comparison of Parallel Systems with Finite Range Distributed Components," Working papers 201, Indian Institute of Management Kozhikode.
    3. Junrui Wang & Rongfang Yan & Bin Lu, 2020. "Stochastic Comparisons of Parallel and Series Systems with Type II Half Logistic-Resilience Scale Components," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    4. Kundu, Amarjit & Chowdhury, Shovan, 2016. "Ordering properties of order statistics from heterogeneous exponentiated Weibull models," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 119-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shakhawat Hossain & Shahedul A. Khan, 2020. "Shrinkage estimation of the exponentiated Weibull regression model for time‐to‐event data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 592-610, November.
    2. Tommaso Lando & Lucio Bertoli-Barsotti, 2020. "Stochastic dominance relations for generalised parametric distributions obtained through composition," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 297-311, December.
    3. Jorge Navarro, 2018. "Distribution-free comparisons of residual lifetimes of coherent systems based on copula properties," Statistical Papers, Springer, vol. 59(2), pages 781-800, June.
    4. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.
    5. Haitham M. Yousof & Mustafa Ç. Korkmaz & Subhradev Sen, 2021. "A New Two-Parameter Lifetime Model," Annals of Data Science, Springer, vol. 8(1), pages 91-106, March.
    6. M. Kelkinnama & M. Asadi, 2019. "Stochastic and ageing properties of coherent systems with dependent identically distributed components," Statistical Papers, Springer, vol. 60(3), pages 805-821, June.
    7. Cleanderson R. Fidelis & Edwin M. M. Ortega & Gauss M. Cordeiro, 2024. "Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction," Stats, MDPI, vol. 7(2), pages 1-16, May.
    8. M. Chahkandi & Jafar Ahmadi & S. Baratpour, 2014. "Non-parametric prediction intervals for the lifetime of coherent systems," Statistical Papers, Springer, vol. 55(4), pages 1019-1034, November.
    9. Hazhir Homei & Saralees Nadarajah, 2018. "On Products and Mixed Sums of Gamma and Beta Random Variables Motivated by Availability," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 799-810, June.
    10. Barmalzan, Ghobad & Najafabadi, Amir T. Payandeh & Balakrishnan, Narayanaswamy, 2015. "Stochastic comparison of aggregate claim amounts between two heterogeneous portfolios and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 235-241.
    11. Haselsteiner, Andreas F. & Thoben, Klaus-Dieter, 2020. "Predicting wave heights for marine design by prioritizing extreme events in a global model," Renewable Energy, Elsevier, vol. 156(C), pages 1146-1157.
    12. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    13. Julian Górny & Erhard Cramer, 2019. "From B-spline representations to gamma representations in hybrid censoring," Statistical Papers, Springer, vol. 60(4), pages 1119-1135, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:97:y:2015:i:c:p:25-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.