IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v96y2015icp38-44.html
   My bibliography  Save this article

On the comparison theorem for multi-dimensional G-SDEs

Author

Listed:
  • Luo, Peng
  • Wang, Falei

Abstract

In this paper, we establish a viability result for stochastic differential equations (SDEs) driven by a multi-dimensional G-Brownian motion. Then we obtain a sufficient and necessary condition for comparison theorem of multi-dimensional G-SDEs by an equivalent criterion of viability condition for G-SDEs.

Suggested Citation

  • Luo, Peng & Wang, Falei, 2015. "On the comparison theorem for multi-dimensional G-SDEs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 38-44.
  • Handle: RePEc:eee:stapro:v:96:y:2015:i:c:p:38-44
    DOI: 10.1016/j.spl.2014.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214003216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Fuqing, 2009. "Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3356-3382, October.
    2. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    3. Marcel Nutz & H. Mete Soner, 2010. "Superhedging and Dynamic Risk Measures under Volatility Uncertainty," Papers 1011.2958, arXiv.org, revised Jun 2012.
    4. Peng, Shige & Zhu, Xuehong, 2006. "Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 370-380, March.
    5. Luo, Peng & Wang, Falei, 2014. "Stochastic differential equations driven by G-Brownian motion and ordinary differential equations," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3869-3885.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Fen-Fen & Yuan, Chenggui, 2022. "Comparison theorem for neutral stochastic functional differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 184(C).
    2. Rahman Ullah & Faiz Faizullah & Quanxin Zhu, 2024. "The Convergence and Boundedness of Solutions to SFDEs with the G-Framework," Mathematics, MDPI, vol. 12(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Luo & Falei Wang, 2019. "Viability for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 32(1), pages 395-416, March.
    2. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    3. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    4. Yang, Fen-Fen & Yuan, Chenggui, 2022. "Comparison theorem for neutral stochastic functional differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 184(C).
    5. Lijun Pan & Jinde Cao & Yong Ren, 2020. "Impulsive Stability of Stochastic Functional Differential Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
    6. Nutz, Marcel & van Handel, Ramon, 2013. "Constructing sublinear expectations on path space," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3100-3121.
    7. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    8. Jaeyoung Sung, 2022. "Optimal contracting under mean-volatility joint ambiguity uncertainties," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(2), pages 593-642, September.
    9. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    10. Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.
    11. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    12. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    13. Dolinsky, Yan & Zouari, Jonathan, 2021. "The value of insider information for super-replication with quadratic transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 394-416.
    14. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    15. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    16. Yan Dolinsky, 2013. "Hedging of Game Options under Model Uncertainty in Discrete Time," Papers 1304.3574, arXiv.org.
    17. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    18. Yan Dolinsky & Jonathan Zouari, 2019. "The Value of Insider Information for Super--Replication with Quadratic Transaction Costs," Papers 1910.09855, arXiv.org, revised Sep 2020.
    19. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    20. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:96:y:2015:i:c:p:38-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.