IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v84y2014icp33-39.html
   My bibliography  Save this article

A generalized Girsanov transformation of finite state stochastic processes in discrete time

Author

Listed:
  • Cohen, Samuel N.
  • Ji, Shaolin
  • Yang, Shuzhen

Abstract

Cohen and Elliott (2010) introduced the backward stochastic difference equations (BSDEs) on spaces related to discrete time, finite state processes. Motivated by obtaining the explicit solution of a linear BSDE under their framework, we develop a new type of Girsanov transformation in this paper.

Suggested Citation

  • Cohen, Samuel N. & Ji, Shaolin & Yang, Shuzhen, 2014. "A generalized Girsanov transformation of finite state stochastic processes in discrete time," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 33-39.
  • Handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:33-39
    DOI: 10.1016/j.spl.2013.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213003234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Samuel N. & Elliott, Robert J., 2010. "A general theory of finite state Backward Stochastic Difference Equations," Stochastic Processes and their Applications, Elsevier, vol. 120(4), pages 442-466, April.
    2. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    3. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    4. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    2. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    3. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    4. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    5. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    6. Albrecht, E & Baum, Günter & Birsa, R & Bradamante, F & Bressan, A & Chapiro, A & Cicuttin, A & Ciliberti, P & Colavita, A & Costa, S & Crespo, M & Cristaudo, P & Dalla Torre, S & Diaz, V & Duic, V &, 2010. "Results from COMPASS RICH-1," Center for Mathematical Economics Working Papers 535, Center for Mathematical Economics, Bielefeld University.
    7. Chen, Zengjing & Kulperger, Reg, 2006. "Minimax pricing and Choquet pricing," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 518-528, June.
    8. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    9. Pelsser Antoon & Gnameho Kossi, 2019. "A Monte Carlo method for backward stochastic differential equations with Hermite martingales," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 37-60, March.
    10. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    11. Chen, Zengjing & Kulperger, Reg & Wei, Gang, 2005. "A comonotonic theorem for BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 41-54, January.
    12. Attaoui, Sami & Cao, Wenbin & Duan, Xiaoman & Liu, Hening, 2021. "Optimal capital structure, ambiguity aversion, and leverage puzzles," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    13. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    14. Bouchard, Bruno & Chassagneux, Jean-François, 2008. "Discrete-time approximation for continuously and discretely reflected BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2269-2293, December.
    15. Leippold, Markus & Schärer, Steven, 2017. "Discrete-time option pricing with stochastic liquidity," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 1-16.
    16. Ali Lazrak, 2005. "Generalized stochastic differential utility and preference for information," Papers math/0503579, arXiv.org.
    17. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    18. Carole Bernard & Shaolin Ji & Weidong Tian, 2013. "An optimal insurance design problem under Knightian uncertainty," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 99-124, November.
    19. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    20. Jiang, Long, 2005. "Converse comparison theorems for backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 71(2), pages 173-183, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:84:y:2014:i:c:p:33-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.