IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i4p1018-1027.html
   My bibliography  Save this article

A class of continuous kernels and Cauchy type heavy tail distributions

Author

Listed:
  • Soltani, A.R.
  • Tafakori, L.

Abstract

We shed light on an interesting class of one sided continuous kernels on [0,∞). Then we present its properties, provide new integral formulas including an extension for the Kotz and Ostrovskii (1996) mixture representation, introduce a class of Cauchy type distributions, and finally enlarge the class of one sided stable densities. This study provides powerful tools in modeling erratic continuous data.

Suggested Citation

  • Soltani, A.R. & Tafakori, L., 2013. "A class of continuous kernels and Cauchy type heavy tail distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1018-1027.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1018-1027
    DOI: 10.1016/j.spl.2012.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521200483X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomasz Kozubowski, 2000. "Exponential Mixture Representation of Geometric Stable Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 231-238, June.
    2. Soltani, A.R. & Shirvani, A. & Alqallaf, F., 2009. "A class of discrete distributions induced by stable laws," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1608-1614, July.
    3. Kotz, Samuel & Ostrovskii, I. V., 1996. "A mixture representation of the Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 26(1), pages 61-64, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yury Khokhlov & Victor Korolev & Alexander Zeifman, 2020. "Multivariate Scale-Mixed Stable Distributions and Related Limit Theorems," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    2. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    3. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.
    4. Kozubowski, Tomasz J., 1998. "Mixture representation of Linnik distribution revisited," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 157-160, June.
    5. Dexter Cahoy, 2012. "An estimation procedure for the Linnik distribution," Statistical Papers, Springer, vol. 53(3), pages 617-628, August.
    6. Halvarsson, Daniel, 2013. "On the Estimation of Skewed Geometric Stable Distributions," Ratio Working Papers 216, The Ratio Institute.
    7. Pakes, Anthony G., 1998. "Mixture representations for symmetric generalized Linnik laws," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 213-221, March.
    8. A. Shirvani & A. Soltani, 2013. "A characterization for truncated cauchy random variables with nonzero skewness parameter," Computational Statistics, Springer, vol. 28(3), pages 1011-1016, June.
    9. Lekshmi, V. Seetha & Jose, K.K., 2006. "Autoregressive processes with Pakes and geometric Pakes generalized Linnik marginals," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 318-326, February.
    10. Krutto Annika & Haugdahl Nøst Therese & Thoresen Magne, 2024. "A heavy-tailed model for analyzing miRNA-seq raw read counts," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 23(1), pages 1-30.
    11. Victor Korolev & Andrey Gorshenin & Konstatin Belyaev, 2019. "Statistical Tests for Extreme Precipitation Volumes," Mathematics, MDPI, vol. 7(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1018-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.