IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i11p2577-2582.html
   My bibliography  Save this article

On the exact distribution and mean value function of a geometric process with exponential interarrival times

Author

Listed:
  • Aydoğdu, Halil
  • Karabulut, İhsan
  • Şen, Elif

Abstract

The geometric process is considered when the distribution of the first interarrival time is assumed to be exponential. An analytical expression for the one dimensional probability distribution of this process is obtained as a solution to a system of recursive differential equations. A power series expansion is derived for the geometric renewal function by using an integral equation and evaluated in a computational perspective. Further, an extension is provided for the power series expansion of the geometric renewal function in the case of the Weibull distribution.

Suggested Citation

  • Aydoğdu, Halil & Karabulut, İhsan & Şen, Elif, 2013. "On the exact distribution and mean value function of a geometric process with exponential interarrival times," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2577-2582.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:11:p:2577-2582
    DOI: 10.1016/j.spl.2013.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213002691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halil Aydoğdu & İhsan Karabulut, 2014. "Power series expansions for the distribution and mean value function of a geometric process with Weibull interarrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(8), pages 599-603, December.
    2. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Mustafa Hilmi Pekalp & Halil Aydoğdu, 2018. "An integral equation for the second moment function of a geometric process and its numerical solution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 176-184, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:11:p:2577-2582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.