IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i5p894-901.html
   My bibliography  Save this article

Strong convergence of ESD for the generalized sample covariance matrices when p/n→0

Author

Listed:
  • Bao, Zhigang

Abstract

Let X=[Xij]p×n be a p×n random matrix whose entries are i.i.d real random variables satisfying the moment condition EX114<∞. Let T be a p×p deterministic nonnegative definite matrix. It is assumed that the empirical distribution of the eigenvalues of T converges weakly to a probability distribution. We consider the renormalized sample covariance matrix H̃=np(1nT1/2XXtT1/2−T) in the case of p/n→0 as p,n→∞. We study the limiting spectral distribution of H̃ in this paper. The limiting distribution is shown to be coincident with the case of a generalized Wigner matrix considered in Bai and Zhang (2010).

Suggested Citation

  • Bao, Zhigang, 2012. "Strong convergence of ESD for the generalized sample covariance matrices when p/n→0," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 894-901.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:5:p:894-901
    DOI: 10.1016/j.spl.2012.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z.D. & Zhang, L.X., 2010. "The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1927-1949, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lili & Paul, Debashis, 2014. "Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→0," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 25-52.
    2. Xie, Junshan, 2013. "Limiting spectral distribution of normalized sample covariance matrices with p/n→0," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 543-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Bhattacharjee & Arup Bose, 2017. "Matrix polynomial generalizations of the sample variance-covariance matrix when pn−1 → y ∈ (0, ∞)," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(4), pages 575-607, December.
    2. Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
    3. Wang, Lili & Paul, Debashis, 2014. "Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→0," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 25-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:5:p:894-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.