IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i3p427-432.html
   My bibliography  Save this article

New examples of heavy-tailed O-subexponential distributions and related closure properties

Author

Listed:
  • Lin, Jianxi
  • Wang, Yuebao

Abstract

Let L and S denote the classes of distributions with long tails and subexponential tails respectively. Let OS denote the class of distributions with O-subexponential tails, which means the distributions with the tails having the same order as the tails of their 2-fold convolutions. In this paper, we first construct a family of distributions without finite means in L∩OS∖S. Next some distributions in L∩OS∖S, which possess finite means or even finite higher moments, are also constructed. In connection with this, we prove that the class OS is closed under minimization of random variables. However, it is not closed under maximization of random variables.

Suggested Citation

  • Lin, Jianxi & Wang, Yuebao, 2012. "New examples of heavy-tailed O-subexponential distributions and related closure properties," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 427-432.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:427-432
    DOI: 10.1016/j.spl.2011.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Changjun & Wang, Yuebao & Cui, Zhaolei, 2010. "Lower limits and upper limits for tails of random sums supported on," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1111-1120, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Tao & Gao, Qingwu & Wang, Yuebao, 2014. "Max-sum equivalence of conditionally dependent random variables," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 60-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshiro Watanabe, 2022. "Embrechts–Goldie’s Problem on the Class of Lattice Convolution Equivalent Distributions," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2622-2642, December.
    2. Yuebao Wang & Hui Xu & Dongya Cheng & Changjun Yu, 2018. "The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands," Statistical Papers, Springer, vol. 59(1), pages 99-126, March.
    3. Wang, Kaiyong & Yang, Yang & Yu, Changjun, 2013. "Estimates for the overshoot of a random walk with negative drift and non-convolution equivalent increments," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1504-1512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:427-432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.