Estimating the parameters of a Poisson process model for predator–prey interactions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2012.07.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Helmers, Roelof & Wayan Mangku, I. & Zitikis, Ricardas, 2003. "Consistent estimation of the intensity function of a cyclic Poisson process," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 19-39, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Froda, Sorana & Vanciu, Vasile, 2013. "A bivariate non-homogeneous birth and death model for predator–prey interactions," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2526-2530.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Helmers, Roelof & Mangku, I. Wayan & Zitikis, Ricardas, 2005. "Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 1-23, January.
- Roelof Helmers & I. Mangku, 2009. "Estimating the intensity of a cyclic Poisson process in the presence of linear trend," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 599-628, September.
- Camerlenghi, F. & Capasso, V. & Villa, E., 2014. "On the estimation of the mean density of random closed sets," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 65-88.
- Roelof Helmers & Qiying Wang & Ričardas Zitikis, 2009. "Confidence regions for the intensity function of a cyclic Poisson process," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 21-36, February.
- Roelof Helmers & I. Mangku, 2012. "Predicting a cyclic Poisson process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1261-1279, December.
- Mark Bebbington & Ričardas Zitikis, 2004. "A Robust Heuristic Estimator for the Period of a Poisson Intensity Function," Methodology and Computing in Applied Probability, Springer, vol. 6(4), pages 441-462, December.
- Nan Shao & Keh‐Shin Lii, 2011. "Modelling non‐homogeneous Poisson processes with almost periodic intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 99-122, January.
More about this item
Keywords
Cyclic populations; Count abundance data; Non homogeneous Poisson process; Parameter estimation; Lotka–Volterra ODE system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2252-2259. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.