IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1039-1045.html
   My bibliography  Save this article

The estimation of the correlation coefficient of bivariate data under dependence: Convergence analysis

Author

Listed:
  • Masry, Elias

Abstract

Let {Xi,Yi} be jointly distributed second-order random variables with correlation coefficient r. The estimation of r from the observations is a classical problem which has been examined under the assumption of an i.i.d. setting. In this paper we examine the statistical properties of the correlation coefficient estimate when the process {Xi,Yi} is dependent, constituting either a strongly mixing process or asymptotically uncorrelated. We establish convergence in probability (with rates) as well as asymptotic normality for the estimation error and present an explicit expression for the asymptotic variance.

Suggested Citation

  • Masry, Elias, 2011. "The estimation of the correlation coefficient of bivariate data under dependence: Convergence analysis," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1039-1045, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1039-1045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211000721
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roussas, George G., 1990. "Nonparametric regression estimation under mixing conditions," Stochastic Processes and their Applications, Elsevier, vol. 36(1), pages 107-116, October.
    2. Tran, Lanh Tat, 1990. "Kernel density estimation under dependence," Statistics & Probability Letters, Elsevier, vol. 10(3), pages 193-201, August.
    3. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    2. Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
    3. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    4. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    5. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    6. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    7. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    8. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    9. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    10. Rajae Azrak & Guy Melard, 2017. "Autoregressive Models with Time-dependent Coefficients. A comparison between Several Approaches," Working Papers ECARES ECARES 2017-48, ULB -- Universite Libre de Bruxelles.
    11. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    12. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    13. Jasiński, Krzysztof, 2016. "Asymptotic normality of numbers of observations near order statistics from stationary processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 259-263.
    14. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
    15. Martins-Filho, Carlos & Yao, Feng, 2009. "Nonparametric regression estimation with general parametric error covariance," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 309-333, March.
    16. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(5), pages 911-952, October.
    17. Aboubacar Amiri, 2013. "Asymptotic normality of recursive estimators under strong mixing conditions," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 81-96, July.
    18. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    19. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    20. Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2024. "Inference in Heavy-Tailed Nonstationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 565-581, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1039-1045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.