IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i7p821-828.html
   My bibliography  Save this article

Higher order inference on a treatment effect under low regularity conditions

Author

Listed:
  • Li, Lingling
  • Tchetgen Tchetgen, Eric
  • van der Vaart, Aad
  • Robins, James M.

Abstract

We describe a novel approach to nonparametric point and interval estimation of a treatment effect in the presence of many continuous confounders. We show that the problem can be reduced to that of point and interval estimation of the expected conditional covariance between treatment and response given the confounders. Our estimators are higher order U-statistics. The approach applies equally to the regular case where the expected conditional covariance is root-n estimable and to the irregular case where slower nonparametric rates prevail.

Suggested Citation

  • Li, Lingling & Tchetgen Tchetgen, Eric & van der Vaart, Aad & Robins, James M., 2011. "Higher order inference on a treatment effect under low regularity conditions," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 821-828, July.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:7:p:821-828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00076-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Donald, S. G. & Newey, W. K., 1994. "Series Estimation of Semilinear Models," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 30-40, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shu & Ernest, Jan & Bühlmann, Peter, 2017. "Nonparametric causal inference from observational time series through marginal integration," Econometrics and Statistics, Elsevier, vol. 2(C), pages 81-105.
    2. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    3. Eric J. Tchetgen Tchetgen, 2022. "Eric J Tchetgen Tchetgen’s contribution to the Discussion of ‘Assumption‐lean inference for generalised linear model parameters’ by Vansteelandt and Dukes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 723-725, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    2. Naoya Sueishi & Arihiro Yoshimura, 2017. "Focused Information Criterion for Series Estimation in Partially Linear Models," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 352-363, September.
    3. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    4. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    5. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    6. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    7. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    8. Galbraith, John W. & Zinde-Walsh, Victoria, 2020. "Simple and reliable estimators of coefficients of interest in a model with high-dimensional confounding effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 609-632.
    9. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    10. You, Jinhong & Sun, Xiaoqian & Pang, Wan-kai & Leung, Ping-kei, 2002. "Jackknifing type weighted least squares estimators in partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 60(1), pages 17-31, November.
    11. Qi Li & Aman Ullha, 1998. "Estimating partially linear panel data models with one-way error components," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 145-166.
    12. Vafa, Keyon & Athey, Susan & Blei, David M., 2024. "Estimating Wage Disparities Using Foundation Models," Research Papers 4206, Stanford University, Graduate School of Business.
    13. You, Jinhong & Zhou, Xian, 2006. "Statistical inference in a panel data semiparametric regression model with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 844-873, April.
    14. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    15. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    16. Cattaneo, Matias D. & Jansson, Michael & Newey, Whitney K., 2018. "Alternative Asymptotics And The Partially Linear Model With Many Regressors," Econometric Theory, Cambridge University Press, vol. 34(2), pages 277-301, April.
    17. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    18. You, Jinhong & Zhou, Xian & Chen, Gemai, 2005. "Jackknifing in partially linear regression models with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 386-404, February.
    19. Whitney K. Newey & James M. Robins, 2017. "Cross-fitting and fast remainder rates for semiparametric estimation," CeMMAP working papers 41/17, Institute for Fiscal Studies.
    20. Manuel S. Santos & Juan Pablo Rincon-Zapatero, 2007. "Moving the Goalposts: Differentiability of the Value Function without Interiority Assumptions," Working Papers 0614, University of Miami, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:7:p:821-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.