IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i1p71-76.html
   My bibliography  Save this article

Nonparametric multi-step prediction in nonlinear state space dynamic systems

Author

Listed:
  • Vila, Jean-Pierre

Abstract

Filtering and smoothing of stochastic state space dynamic systems have benefited from several generations of estimation approaches since the seminal works of Kalman in the sixties. A set of global analytical or numerical methods are now available, such as the well-known sequential Monte Carlo particle methods which offer some theoretical convergence results for both types of problems. However except in the case of linear Gaussian systems, objectives of the third kind i.e. prediction objectives, which aim at estimating k time steps ahead the anticipated probability density function of the system state variables, conditional on past and present system output observations, still raise theoretical and practical difficulties. The aim of this paper is to propose a nonparametric particle multi-step prediction method able to consistently estimate such anticipated conditional pdf of the state variables as well as their expectations.

Suggested Citation

  • Vila, Jean-Pierre, 2011. "Nonparametric multi-step prediction in nonlinear state space dynamic systems," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 71-76, January.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:71-76
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00270-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vila, Jean-Pierre, 2012. "Enhanced consistency of the Resampled Convolution Particle Filter," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 786-797.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:71-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.