IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i10p1482-1485.html
   My bibliography  Save this article

A new proof of convergence of MCMC via the ergodic theorem

Author

Listed:
  • Asmussen, Søren
  • Glynn, Peter W.

Abstract

A key result underlying the theory of MCMC is that any [eta]-irreducible Markov chain having a transition density with respect to [eta] and possessing a stationary distribution [pi] is automatically positive Harris recurrent. This paper provides a short self-contained proof of this fact using the ergodic theorem in its standard form as the most advanced tool.

Suggested Citation

  • Asmussen, Søren & Glynn, Peter W., 2011. "A new proof of convergence of MCMC via the ergodic theorem," Statistics & Probability Letters, Elsevier, vol. 81(10), pages 1482-1485, October.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:10:p:1482-1485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001751
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
    2. Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
    3. Rudolf, Daniel & Schweizer, Nikolaus, 2015. "Error bounds of MCMC for functions with unbounded stationary variance," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 6-12.
    4. Bryant Davis & James P. Hobert, 2021. "On the Convergence Complexity of Gibbs Samplers for a Family of Simple Bayesian Random Effects Models," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1323-1351, December.
    5. Ye Chen & Ilya O. Ryzhov, 2020. "Technical Note—Consistency Analysis of Sequential Learning Under Approximate Bayesian Inference," Operations Research, INFORMS, vol. 68(1), pages 295-307, January.
    6. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
    7. Halme, Merja & Kallio, Markku, 2014. "Likelihood estimation of consumer preferences in choice-based conjoint analysis," European Journal of Operational Research, Elsevier, vol. 239(2), pages 556-564.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:10:p:1482-1485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.