IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i15-16p1260-1264.html
   My bibliography  Save this article

A note on asymptotic approximations of inverse moments of nonnegative random variables

Author

Listed:
  • Shi, Xiaoping
  • Wu, Yuehua
  • Liu, Yu

Abstract

Let {Zn} be a sequence of independently distributed and nonnegative random variables and let . We show that, under mild conditions, E[(a+Xn)-[alpha]] can be asymptotically approximated by [a+E(Xn)]-[alpha] for a>0 and [alpha]>0. We further show that E{[f(Xn)]-1} can be asymptotically approximated by {f[E(Xn)]}-1 for a function f([dot operator]) satisfying certain conditions.

Suggested Citation

  • Shi, Xiaoping & Wu, Yuehua & Liu, Yu, 2010. "A note on asymptotic approximations of inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1260-1264, August.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1260-1264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00111-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia, Nancy Lopes & Palacios, José Luis, 2001. "On inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 235-239, June.
    2. Kaluszka, M. & Okolewski, A., 2004. "On Fatou-type lemma for monotone moments of weakly convergent random variables," Statistics & Probability Letters, Elsevier, vol. 66(1), pages 45-50, January.
    3. Ramsay, Colin M., 1993. "A Note on Random Survivorship Group Benefits," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 149-156, May.
    4. Pittenger, A. O., 1990. "Sharp mean-variance bounds for Jensen-type inequalities," Statistics & Probability Letters, Elsevier, vol. 10(2), pages 91-94, July.
    5. Wu, Tiee-Jian & Shi, Xiaoping & Miao, Baiqi, 2009. "Asymptotic approximation of inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1366-1371, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    2. Phillips, T.R.L. & Zhigljavsky, A., 2014. "Approximation of inverse moments of discrete distributions," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 135-143.
    3. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuejun & Hu, Shuhe & Yang, Wenzhi & Ling, Nengxiang, 2010. "Exponential inequalities and inverse moment for NOD sequence," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 452-461, March.
    2. Wu, Tiee-Jian & Shi, Xiaoping & Miao, Baiqi, 2009. "Asymptotic approximation of inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1366-1371, June.
    3. Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    4. Cribari-Neto, Francisco & Garcia, Nancy Lopes & Vasconcellos, Klaus L. P., 2000. "A Note on Inverse Moments of Binomial Variates," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 20(2), November.
    5. Kaluszka, M. & Okolewski, A., 2004. "On Fatou-type lemma for monotone moments of weakly convergent random variables," Statistics & Probability Letters, Elsevier, vol. 66(1), pages 45-50, January.
    6. Daniel A. Griffith, 2022. "Reciprocal Data Transformations and Their Back-Transforms," Stats, MDPI, vol. 5(3), pages 1-24, July.
    7. Zhao, Feng-Zhen, 2012. "Some recursive formulas related to inverse moments of the random variables with binomial-type distributions," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1290-1296.
    8. Christian Ewerhart & Julia Lareida, 2018. "Voluntary disclosure in asymmetric contests," ECON - Working Papers 279, Department of Economics - University of Zurich, revised Jul 2023.
    9. Garcia, Nancy Lopes & Palacios, José Luis, 2001. "On inverse moments of nonnegative random variables," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 235-239, June.
    10. Phillips, T.R.L. & Zhigljavsky, A., 2014. "Approximation of inverse moments of discrete distributions," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 135-143.
    11. Karen Aardal & Frederik von Heymann, 2014. "On the Structure of Reduced Kernel Lattice Bases," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 823-840, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:15-16:p:1260-1264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.