IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i8p1038-1043.html
   My bibliography  Save this article

Convergence rates in the law of the iterated logarithm for negatively associated random variables with multidimensional indices

Author

Listed:
  • Li, Yun-Xia

Abstract

For a set of negatively associated random variables indexed by , d>=2, the positive integer d-dimensional lattice points, convergence rates in the law of the iterated logarithm are discussed. Then the results of Gut (see [Gut, A. (1980). Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices. Ann. Probab. 8, 298-313]) are extended.

Suggested Citation

  • Li, Yun-Xia, 2009. "Convergence rates in the law of the iterated logarithm for negatively associated random variables with multidimensional indices," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1038-1043, April.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:8:p:1038-1043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00573-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li-Xin & Wen, Jiwei, 2001. "A weak convergence for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 259-267, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Guang-hui & Wang, Jian-Feng, 2009. "Uniform bounds in normal approximation under negatively associated random fields," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 215-222, January.
    2. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    3. Ming Yuan & Chun Su & Taizhong Hu, 2003. "A Central Limit Theorem for Random Fields of Negatively Associated Processes," Journal of Theoretical Probability, Springer, vol. 16(2), pages 309-323, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:8:p:1038-1043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.