IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i4p456-462.html
   My bibliography  Save this article

On the statistical properties of a stationary process sampled by a stationary point process

Author

Listed:
  • Charlot, F.
  • Rachdi, M.

Abstract

Let , where or , be a strictly stationary process, which is assumed to be strongly mixing. In this paper, we are concerned with the stationarity and the mixing properties of the process obtained from X by a random sampling, that is, , where is a real point process. This study is done for [phi], [beta], [rho] and [alpha]-mixing processes.

Suggested Citation

  • Charlot, F. & Rachdi, M., 2008. "On the statistical properties of a stationary process sampled by a stationary point process," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 456-462, March.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:4:p:456-462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00261-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Resnick, Sidney & Samorodnitsky, Gennady, 2004. "Point processes associated with stationary stable processes," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 191-209, December.
    2. Lii, Keh-Shin & Masry, Elias, 1994. "Spectral estimation of continuous-time stationary processes from random sampling," Stochastic Processes and their Applications, Elsevier, vol. 52(1), pages 39-64, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Lévy‐Leduc & E. Moulines & F. Roueff, 2008. "Frequency estimation based on the cumulated Lomb–Scargle periodogram," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1104-1131, November.
    2. Raluca M. Balan & Sana Louhichi, 2009. "Convergence of Point Processes with Weakly Dependent Points," Journal of Theoretical Probability, Springer, vol. 22(4), pages 955-982, December.
    3. Fasen, Vicky & Roy, Parthanil, 2016. "Stable random fields, point processes and large deviations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 832-856.
    4. Glynn, Peter & Sigman, Karl, 1998. "Independent sampling of a stochastic process," Stochastic Processes and their Applications, Elsevier, vol. 74(2), pages 151-164, June.
    5. Mustapha Rachdi & Rachid Sabre, 2009. "Mixed-spectra analysis for stationary random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(3), pages 333-358, August.
    6. Panigrahi, Snigdha & Roy, Parthanil & Xiao, Yimin, 2021. "Maximal moments and uniform modulus of continuity for stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 92-124.
    7. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    8. Keh‐Shin Lii & Elias Masry, 1995. "On The Selection Of Random Sampling Schemes For The Spectral Estimation Of Continuous Time Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(3), pages 291-311, May.
    9. Jean‐Marc Bardet & Pierre R. Bertrand, 2010. "A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 458-476, September.
    10. Parthanil Roy, 2017. "Maxima of stable random fields, nonsingular actions and finitely generated abelian groups: A survey," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(4), pages 513-540, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:4:p:456-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.