IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i2p118-126.html
   My bibliography  Save this article

A second Marshall inequality in convex estimation

Author

Listed:
  • Balabdaoui, Fadoua
  • Rufibach, Kaspar

Abstract

We prove a second Marshall inequality for adaptive convex density estimation via least squares. The result completes the first inequality proved recently by Dümbgen et al. [2007. Marshall's lemma for convex density estimation. IMS Lecture Notes--Monograph Series, submitted for publication. Preprint available at ], and is very similar to the original Marshall inequality in monotone estimation.

Suggested Citation

  • Balabdaoui, Fadoua & Rufibach, Kaspar, 2008. "A second Marshall inequality in convex estimation," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 118-126, February.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:2:p:118-126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00202-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayanta Kumar Pal & Michael Woodroofe, 2006. "On the Distance Between Cumulative Sum Diagram and Its Greatest Convex Minorant for Unequally Spaced Design Points," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 279-291, June.
    2. Gneiting, Tilmann, 1999. "Radial Positive Definite Functions Generated by Euclid's Hat," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 88-119, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Promit Ghosal & Bodhisattva Sen, 2017. "On Univariate Convex Regression," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 215-253, August.
    2. Balabdaoui, Fadoua & Durot, Cécile, 2015. "Marshall lemma in discrete convex estimation," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 143-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gneiting, Tilmann, 2002. "Compactly Supported Correlation Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 493-508, November.
    2. Alonso-Malaver, C.E. & Porcu, E. & Giraldo, R., 2015. "Multivariate and multiradial Schoenberg measures with their dimension walks," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 251-265.
    3. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    4. Mai, Jan-Frederik & Wang, Ruodu, 2021. "Stochastic decomposition for ℓp-norm symmetric survival functions on the positive orthant," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    6. Andrea Barth & Fred Espen Benth & Jurgen Potthoff, 2011. "Hedging of Spatial Temperature Risk with Market-Traded Futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(2), pages 93-117.
    7. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    8. Sajti, Szilárd, 2023. "Domain-domain correlation functions used in off-specular scattering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    9. Fadoua Balabdaoui & Jon A. Wellner, 2010. "Estimation of a k‐monotone density: characterizations, consistency and minimax lower bounds," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 45-70, February.
    10. Furrer, Reinhard & Bengtsson, Thomas, 2007. "Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 227-255, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:2:p:118-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.