IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i15p2552-2558.html
   My bibliography  Save this article

The uniform approximation of the tail probability of the randomly weighted sums of subexponential random variables

Author

Listed:
  • Zhu, Chun-hua
  • Gao, Qi-bing

Abstract

Let {Xk,1 [infinity] such that the asymptotic relation holds uniformly for all weights ck,1

Suggested Citation

  • Zhu, Chun-hua & Gao, Qi-bing, 2008. "The uniform approximation of the tail probability of the randomly weighted sums of subexponential random variables," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2552-2558, October.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:15:p:2552-2558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00170-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ng, K.W. & Tang, Q.H. & Yang, H., 2002. "Maxima of Sums of Heavy-Tailed Random Variables," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 43-55, May.
    2. Sgibnev, M. S., 1996. "On the distribution of the maxima of partial sums," Statistics & Probability Letters, Elsevier, vol. 28(3), pages 235-238, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yiqing, 2020. "A Kesten-type bound for sums of randomly weighted subexponential random variables," Statistics & Probability Letters, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Leipus, Remigijus & Šiaulys, Jonas, 2014. "Closure property and maximum of randomly weighted sums with heavy-tailed increments," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 162-170.
    2. Shen, Xinmei & Lin, Zhengyan, 2008. "Precise large deviations for randomly weighted sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3222-3229, December.
    3. Zhengyan Lin & Xinmei Shen, 2013. "Approximation of the Tail Probability of Dependent Random Sums Under Consistent Variation and Applications," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 165-186, March.
    4. Jiang, Tao & Wang, Yuebao & Cui, Zhaolei & Chen, Yuxin, 2019. "On the almost decrease of a subexponential density," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 71-79.
    5. Jaap Geluk & Qihe Tang, 2009. "Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables," Journal of Theoretical Probability, Springer, vol. 22(4), pages 871-882, December.
    6. Zhang, Chenhua, 2014. "Uniform asymptotics for the tail probability of weighted sums with heavy tails," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 221-229.
    7. Wang, Dingcheng & Tang, Qihe, 2004. "Maxima of sums and random sums for negatively associated random variables with heavy tails," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 287-295, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:15:p:2552-2558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.