IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i15p2433-2436.html
   My bibliography  Save this article

Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model

Author

Listed:
  • Brilhante, M.F.
  • Kotz, S.

Abstract

The infinite divisibility of the Laplace distribution and its applicability as a statistical model were the motivation for the study of some properties of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model. This model is an extension of the classical symmetric Laplace model for the case of asymmetric tails. In this note we shall show that the spacings are generalized exponential mixtures or gamma mixtures and, hence, preserve the infinite divisibility of the parent model.

Suggested Citation

  • Brilhante, M.F. & Kotz, S., 2008. "Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2433-2436, October.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:15:p:2433-2436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00145-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hinkley, David V. & Revankar, Nagesh S., 1977. "Estimation of the Pareto law from underreported data : A further analysis," Journal of Econometrics, Elsevier, vol. 5(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    2. Anil K. Bera & Antonio F. Galvao Jr. & Gabriel V. Montes-Rojas & Sung Y. Park, 2014. "Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression," World Scientific Book Chapters, in: Kaddour Hadri & William Mikhail (ed.), Econometric Methods and Their Applications in Finance, Macro and Related Fields, chapter 7, pages 167-199, World Scientific Publishing Co. Pte. Ltd..
    3. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
    4. Kotz, Samuel & van Dorp, J. René, 2005. "A link between two-sided power and asymmetric Laplace distributions: with applications to mean and variance approximations," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 383-394, March.
    5. Tomasz Kozubowski & Saralees Nadarajah, 2010. "Multitude of Laplace distributions," Statistical Papers, Springer, vol. 51(1), pages 127-148, January.
    6. Wright, Stephen E., 2024. "A note on computing maximum likelihood estimates for the three-parameter asymmetric Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    7. Emrah Altun, 2019. "Two-sided exponential–geometric distribution: inference and volatility modeling," Computational Statistics, Springer, vol. 34(3), pages 1215-1245, September.
    8. Baker, Rose, 2017. "Creating new distributions by blunting cusps," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 55-63.
    9. Tomasz J. Kozubowski & Krzysztof Podgórski, 2000. "A Multivariate and Asymmetric Generalization of Laplace Distribution," Computational Statistics, Springer, vol. 15(4), pages 531-540, December.
    10. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    11. Gawronski Wolfgang, 2001. "On The Unimodality Of Geometric Stable Laws," Statistics & Risk Modeling, De Gruyter, vol. 19(4), pages 405-418, April.
    12. Geraci, Marco, 2014. "Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i13).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:15:p:2433-2436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.