IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i14p2171-2174.html
   My bibliography  Save this article

On the equivalence between standard and sequentially ordered hidden Markov models

Author

Listed:
  • Chopin, N.

Abstract

Chopin [Chopin, N., 2007. Inference and model choice for sequentially ordered hidden markov models. J. R. Statist. Soc. B 69 (2), 269-284] introduced a sequentially ordered hidden Markov model, in which states are ordered according to their order of appearance, and claimed that such a model is a re-parametrisation of a standard Markov model. This note gives a formal proof that this equivalence holds in Bayesian terms, as both formulations generate equivalent posterior distributions, but does not hold in Frequentist terms, as both formulations generate incompatible likelihood functions. Perhaps surprisingly, this shows that Bayesian re-parametrisation and Frequentist re-parametrisation are not identical concepts.

Suggested Citation

  • Chopin, N., 2008. "On the equivalence between standard and sequentially ordered hidden Markov models," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2171-2174, October.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:14:p:2171-2174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00106-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Chopin, 2007. "Inference and model choice for sequentially ordered hidden Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 269-284, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    2. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    3. Christopher Nam & John Aston & Adam Johansen, 2014. "Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 553-575, June.
    4. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    5. Shi, Minghui & Dunson, David B., 2011. "Bayesian variable selection via particle stochastic search," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 283-291, February.
    6. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    7. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:14:p:2171-2174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.