IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i14p2010-2017.html
   My bibliography  Save this article

Laws of large numbers for the number of weak records

Author

Listed:
  • Gouet, Raúl
  • Javier López, F.
  • Sanz, Gerardo

Abstract

We obtain strong laws of large numbers for the number of weak records among the first n observations from a sequence of nonnegative integer-valued independent identically distributed random variables.

Suggested Citation

  • Gouet, Raúl & Javier López, F. & Sanz, Gerardo, 2008. "Laws of large numbers for the number of weak records," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2010-2017, October.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:14:p:2010-2017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00070-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bairamov, Ismihan & Stepanov, Alexei, 2006. "A note on large deviations for weak records," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1449-1453, August.
    2. Vervaat, Wim, 1973. "Limit theorems for records from discrete distributions," Stochastic Processes and their Applications, Elsevier, vol. 1(4), pages 317-334, October.
    3. Dembinska, A. & Stepanov, A., 2006. "Limit theorems for the ratio of weak records," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1454-1464, August.
    4. Stepanov, A. V. & Balakrishnan, N. & Hofmann, Glenn, 2003. "Exact distribution and Fisher information of weak record values," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 69-81, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Lafuente & Raúl Gouet & F. Javier López & Gerardo Sanz, 2022. "Near-Record Values in Discrete Random Sequences," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    2. Gouet, Raúl & López, F. Javier & Maldonado, Lina P. & Sanz, Gerardo, 2014. "Statistical inference for the geometric distribution based on δ-records," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 21-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enkelejd Hashorva & Alexei Stepanov, 2012. "Limit theorems for the spacings of weak records," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 163-180, February.
    2. Krzysztof Jasiński, 2018. "Relations for product moments and covariances of kth records from discrete distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 125-141, February.
    3. Bairamov, Ismihan & Stepanov, Alexei, 2006. "A note on large deviations for weak records," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1449-1453, August.
    4. Jasiński, Krzysztof, 2019. "Limiting behavior of the ratio of kth records," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 29-34.
    5. Dembinska, A. & Stepanov, A., 2006. "Limit theorems for the ratio of weak records," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1454-1464, August.
    6. Eric S. Key, 2005. "On the Number of Records in an iid Discrete Sequence," Journal of Theoretical Probability, Springer, vol. 18(1), pages 99-107, April.
    7. Raúl Gouet & F. López & Gerardo Sanz, 2012. "On δ-record observations: asymptotic rates for the counting process and elements of maximum likelihood estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 188-214, March.
    8. Dembinska, Anna & López-Blázquez, Fernando, 2005. "kth records from discrete distributions," Statistics & Probability Letters, Elsevier, vol. 71(3), pages 203-214, March.
    9. Amini, Morteza & Ahmadi, J., 2007. "Fisher information in record values and their concomitants about dependence and correlation parameters," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 964-972, June.
    10. Balakrishnan, N. & Stepanov, A., 2008. "Asymptotic properties of the ratio of order statistics," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 301-310, February.
    11. Miguel Lafuente & Raúl Gouet & F. Javier López & Gerardo Sanz, 2022. "Near-Record Values in Discrete Random Sequences," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    12. Pakhteev, A. & Stepanov, A., 2019. "Discrete records: Limit theorems for their spacings and generation methods," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 134-142.
    13. Clément Dombry & Michael Falk & Maximilian Zott, 2019. "On Functional Records and Champions," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1252-1277, September.
    14. López-Blázquez, F. & Salamanca Miño, B. & Dembinska, A., 2005. "A note on the distribution of kth records from discrete distributions," Statistics & Probability Letters, Elsevier, vol. 75(4), pages 325-330, December.
    15. Gouet, Raúl & López, F. Javier & Maldonado, Lina P. & Sanz, Gerardo, 2014. "Statistical inference for the geometric distribution based on δ-records," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 21-32.
    16. Bayramoglu, Ismihan & Stepanov, Alexei, 2024. "Asymptotic properties of mth spacings based on records," Statistics & Probability Letters, Elsevier, vol. 208(C).
    17. Hofmann, Glenn & Balakrishnan, N. & Ahmadi, Jafar, 2005. "Characterization of hazard function factorization by Fisher information in minima and upper record values," Statistics & Probability Letters, Elsevier, vol. 72(1), pages 51-57, April.
    18. Fernando López-Blázquez & Jack Wesołowski, 2001. "Discrete distributions for which the regression of the first record on the second is linear," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 121-131, June.
    19. Balakrishnan, N. & Stepanov, A., 2006. "On the Fisher information in record data," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 537-545, March.
    20. S. Baratpour & J. Ahmadi & N. Arghami, 2007. "Entropy properties of record statistics," Statistical Papers, Springer, vol. 48(2), pages 197-213, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:14:p:2010-2017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.