IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i13p1811-1816.html
   My bibliography  Save this article

Optimal robust estimates using the Kullback-Leibler divergence

Author

Listed:
  • Yohai, Victor J.

Abstract

We define two measures of the performance of an estimating functional T of a multi-dimensional parameter, based on the Kullback-Leibler (KL) divergence. The first one is the KL sensitivity which measures the degree of robustness of the estimate under infinitesimal outlier contamination and the second one is the KL efficiency, which measures the asymptotic efficiency of the estimate based on T when the assumed model holds. Using these two measures we define optimal robust M-estimates using the Hampel approach. The optimal estimates are defined by maximizing the KL efficiency subject to a bound on the KL sensitivity. In this paper we show that these estimates coincide with the optimal estimates corresponding to another Hampel problem studied by Stahel [Stahel, W.A., 1981. Robust estimation, infinitesimal optimality and covariance matrix estimators. Ph.D. Thesis, ETH, Zurich]: to minimize the trace of a standardized asymptotic covariance matrix subject to a bound on the norm of a standardized gross error sensitivity, where both the asymptotic covariance matrix and the gross error sensitivity are standardized by means of the Fisher information matrix.

Suggested Citation

  • Yohai, Victor J., 2008. "Optimal robust estimates using the Kullback-Leibler divergence," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1811-1816, September.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1811-1816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00044-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephan Morgenthaler & Clifford Hurvich, 1991. "An information-theoretic framework for robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 131-146, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdora, Marina & Yohai, Víctor, 2020. "M estimators based on the probability integral transformation with applications to count data," Statistics & Probability Letters, Elsevier, vol. 162(C).
    2. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1811-1816. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.