IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i12p1624-1633.html
   My bibliography  Save this article

Moment estimation in a semiparametric generalized linear model

Author

Listed:
  • Wang, Xueqin
  • Peng, Hanxiang

Abstract

In this article, we propose to estimate the regression parameters in a semiparametric generalized linear model by moment estimating equations. These estimators are shown to be consistent and asymptotically normal. We present two estimators of the nonparametric part, provide conditions for the existence and uniform consistency, and obtain faster rates of convergence under weaker assumptions.

Suggested Citation

  • Wang, Xueqin & Peng, Hanxiang, 2008. "Moment estimation in a semiparametric generalized linear model," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1624-1633, September.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:12:p:1624-1633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00021-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forrester Jeffrey S. & Hooper William J. & Peng Hanxiang & Schick Anton, 2003. "On the construction of efficient estimators in semiparametric models," Statistics & Risk Modeling, De Gruyter, vol. 21(2), pages 109-138, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanxiang Peng, 2008. "Efficient inference in a semiparametric generalised linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(2), pages 115-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Hanxiang & Schick, Anton, 2005. "Efficient estimation of linear functionals of a bivariate distribution with equal, but unknown marginals: the least-squares approach," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 385-409, August.
    2. Wu, Jingjing & Karunamuni, Rohana & Zhang, Biao, 2010. "Minimum Hellinger distance estimation in a two-sample semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1102-1122, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:12:p:1624-1633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.