IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i5p514-524.html
   My bibliography  Save this article

Mitigating the effect of measurement errors in quantile estimation

Author

Listed:
  • Schechtman, E.
  • Spiegelman, C.

Abstract

Quantiles are frequently used as descriptive measures. When data contains measurement errors, using the contaminated data to estimate the quantiles results in biased estimates. In this paper, we suggest two methods for reducing the effect of measurement errors on the quantile estimates and compare them, via an extensive simulation study, to the estimates obtained by the naive method, that is: by the estimates obtained from the observed (contaminated) data. The method we recommend is based on a method in a paper by Cook and Stefanski. However, we suggest using a combination of bootstrap and jackknifing to replace their extrapolation step.

Suggested Citation

  • Schechtman, E. & Spiegelman, C., 2007. "Mitigating the effect of measurement errors in quantile estimation," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 514-524, March.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:5:p:514-524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00272-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karl Majeske & Terri Lynch-Caris & Janet Brelin-Fornari, 2010. "Quantifying R2 bias in the presence of measurement error," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(4), pages 667-677.

    More about this item

    Keywords

    Bootstrap Jackknife Percentiles;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:5:p:514-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.