IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i12p1269-1281.html
   My bibliography  Save this article

Test-based classification: A linkage between classification and statistical testing

Author

Listed:
  • Liao, Shu-Min
  • Akritas, Michael

Abstract

The purpose of this article is to introduce a new classification methodology. The methodology uses a connection, which we uncover, between classification and testing, and is called Test-based classification. Although the main focus of this article is the binary classification with the univariate and the multivariate data, an extension to the multiclass classification is also covered. Several simulated and real data sets are used to demonstrate how this new methodology works. We argue that our new idea is competitive with the linear and quadratic discriminant analysis when the observed data are normally distributed, but it can outperform them when the data are not normally distributed. Lanchenbruch's holdout misclassification rate is used to judge the performance of classification.

Suggested Citation

  • Liao, Shu-Min & Akritas, Michael, 2007. "Test-based classification: A linkage between classification and statistical testing," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1269-1281, July.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:12:p:1269-1281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00090-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Modarres, 2018. "Multinomial interpoint distances," Statistical Papers, Springer, vol. 59(1), pages 341-360, March.
    2. Ghimire, Santosh & Wang, Haiyan, 2012. "Classification of image pixels based on minimum distance and hypothesis testing," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2273-2287.
    3. Modarres, Reza, 2016. "Multivariate Poisson interpoint distances," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 113-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:12:p:1269-1281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.