IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i11p1133-1136.html
   My bibliography  Save this article

Random convex combinations of order statistics

Author

Listed:
  • Beutner, Eric
  • Kamps, Udo

Abstract

For order statistics Xi,n,Xj,n,Xk,n with 1[less-than-or-equals, slant]i

Suggested Citation

  • Beutner, Eric & Kamps, Udo, 2007. "Random convex combinations of order statistics," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1133-1136, June.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:11:p:1133-1136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00065-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, M. C., 2002. "On fractional uniform order statistics," Statistics & Probability Letters, Elsevier, vol. 58(1), pages 93-96, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vuong, Q.N. & Bedbur, S. & Kamps, U., 2013. "Distances between models of generalized order statistics," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 24-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matt Goldman & David M. Kaplan, 2018. "Non‐parametric inference on (conditional) quantile differences and interquantile ranges, using L‐statistics," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 136-169, June.
    2. Beutner, E. & Cramer, E., 2014. "Using linear interpolation to reduce the order of the coverage error of nonparametric prediction intervals based on right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 95-109.
    3. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
    4. Szymkowiak, Magdalena, 2018. "Generalized aging intensity functions," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 198-208.
    5. David M. Kaplan & Matt Goldman, 2013. "IDEAL Quantile Inference via Interpolated Duals of Exact Analytic L-statistics," Working Papers 1315, Department of Economics, University of Missouri.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:11:p:1133-1136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.