IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i17p1914-1924.html
   My bibliography  Save this article

Superposition of renewal processes and an application to multi-server queues

Author

Listed:
  • Kella, Offer
  • Stadje, Wolfgang

Abstract

The aim of this paper is to compare the waiting times of customers in multiple-server queues, where the idle times are removed, with different numbers of servers. For this purpose we develop some results regarding the vector-valued marked point process whose points are arrival epochs of the superposition of renewal processes with different continuous inter-arrival distribution and the marks are the vectors of forward recurrence times of the various renewal processes at these arrival epochs.

Suggested Citation

  • Kella, Offer & Stadje, Wolfgang, 2006. "Superposition of renewal processes and an application to multi-server queues," Statistics & Probability Letters, Elsevier, vol. 76(17), pages 1914-1924, November.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:17:p:1914-1924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00158-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alsmeyer, Gerold, 1996. "Superposed continuous renewal processes A Markov renewal approach," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 311-322, February.
    2. Susan L. Albin, 1986. "Delays for Customers from Different Arrival Streams to a Queue," Management Science, INFORMS, vol. 32(3), pages 329-340, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stadje, Wolfgang, 2012. "Embedded Markov chain analysis of the superposition of renewal processes," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1497-1503.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stadje, Wolfgang, 2012. "Embedded Markov chain analysis of the superposition of renewal processes," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1497-1503.
    2. Konstantopoulos, Takis & Last, Günter, 1999. "On the use of Lyapunov function methods in renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 165-178, January.
    3. Alsmeyer, Gerold & Hoefs, Volker, 2002. "Markov renewal theory for stationary (m+1)-block factors: convergence rate results," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 77-112, March.
    4. Bitran, Gabriel R. & Morabito, Reinaldo., 1995. "An overview of tradeoff curve analysis in the design of manufacturing systems," Working papers 3806-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Bitran, Gabriel R. & Morabito, Reinaldo., 1994. "Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems," Working papers 3743-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Ananth V. Iyer & Apurva Jain, 2003. "The Logistics Impact of a Mixture of Order-Streams in a Manufacturer-Retailer System," Management Science, INFORMS, vol. 49(7), pages 890-906, July.
    7. Bitran, Gabriel R. & Morabito, Reinaldo., 1995. "Manufacturing system design : tradeoff curve analysis," Working papers 3805-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. Gerold Alsmeyer & Fabian Buckmann, 2018. "Fluctuation Theory for Markov Random Walks," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2266-2342, December.
    9. Apurva Jain, 2006. "Priority and dynamic scheduling in a make‐to‐stock queue with hyperexponential demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 363-382, August.
    10. Bitran, Gabriel R. & Sarkar, Debashish., 1990. "Throughput analysis in manufacturing networds [sic]," Working papers 3230-90., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Chydzinski, Andrzej, 2022. "Per-flow structure of losses in a finite-buffer queue," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    12. Zhao, Ruiqing & Tang, Wansheng & Yun, Huaili, 2006. "Random fuzzy renewal process," European Journal of Operational Research, Elsevier, vol. 169(1), pages 189-201, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:17:p:1914-1924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.