IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i16p1714-1722.html
   My bibliography  Save this article

Convergence rates for the law of large numbers for arrays

Author

Listed:
  • Hernández, Víctor
  • Urmeneta, Henar

Abstract

We present Baum and Katz type moment conditions which characterize convergence rates for the laws of the large numbers for rowwise arrays. It considers arrays of rowwise independent, but not necessarily identically distributed random variables where each row regularly covers a random variable.

Suggested Citation

  • Hernández, Víctor & Urmeneta, Henar, 2006. "Convergence rates for the law of large numbers for arrays," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1714-1722, October.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:16:p:1714-1722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00125-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sung, Soo Hak & Volodin, Andrei I. & Hu, Tien-Chung, 2005. "More on complete convergence for arrays," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 303-311, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urmeneta, Henar & Hernandez, Victor, 2007. "Random Riemann Sum estimator versus Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4717-4730, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuejun Wang & Yi Wu & Shuhe Hu, 2016. "Exponential probability inequality for $$m$$ m -END random variables and its applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 127-147, February.
    2. Kruglov, Victor M. & Volodin, Andrei I. & Hu, Tien-Chung, 2006. "On complete convergence for arrays," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1631-1640, September.
    3. Stoica, George, 2008. "The Baum-Katz theorem for bounded subsequences," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 924-926, May.
    4. Sung, Soo Hak, 2007. "Complete convergence for weighted sums of random variables," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 303-311, February.
    5. Kuczmaszewska, Anna, 2007. "On complete convergence for arrays of rowwise dependent random variables," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1050-1060, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:16:p:1714-1722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.