IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i11p1117-1124.html
   My bibliography  Save this article

Nonparametric estimation of the maximum hazard under dependence conditions

Author

Listed:
  • Quintela-del-Río, A.

Abstract

The maximum of a hazard function is a parameter of great importance in seismicity studies, because it constitutes the maximum risk of occurrence of an earthquake in a given interval of time. By means of kernel nonparametric estimates of the first derivative of the hazard function, we establish uniform convergence properties and asymptotic normality of an estimate of the maximum, in a context of strong mixing dependence. A small simulation study and a practical example show the performance of the proposed estimator in finite samples.

Suggested Citation

  • Quintela-del-Río, A., 2006. "Nonparametric estimation of the maximum hazard under dependence conditions," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1117-1124, June.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:11:p:1117-1124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00455-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Quintela-Del-Río & Ph. Vieu, 1997. "A nonparametric conditional mode estimate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 253-266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gneyou, Kossi Essona, 2014. "A strong linear representation for the maximum conditional hazard rate estimator in survival analysis," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 10-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    2. Salim Bouzebda & Christophe Chesneau, 2020. "A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods," Stats, MDPI, vol. 3(4), pages 1-9, October.
    3. Ho, Chi-san & Damien, Paul & Walker, Stephen, 2017. "Bayesian mode regression using mixtures of triangular densities," Journal of Econometrics, Elsevier, vol. 197(2), pages 273-283.
    4. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    5. Said Attaoui, 2014. "Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 257-286, July.
    6. Gneyou, Kossi Essona, 2014. "A strong linear representation for the maximum conditional hazard rate estimator in survival analysis," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 10-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:11:p:1117-1124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.