IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v75y2005i2p77-85.html
   My bibliography  Save this article

On Lange and Ryan's plotting technique for diagnosing non-normality of random effects

Author

Listed:
  • Eberly, Lynn E.
  • Thackeray, Lisa M.

Abstract

For linear mixed models, Lange and Ryan's plot [Lange, N., Ryan, L., 1989. Assessing normality in random effects models. Ann. Statist. 17, 624-642] was derived for diagnosing random effect distributions. We show it is sensitive to both non-normality of random effects and mis-specified mean models, and thus may be more useful as a general diagnostic.

Suggested Citation

  • Eberly, Lynn E. & Thackeray, Lisa M., 2005. "On Lange and Ryan's plotting technique for diagnosing non-normality of random effects," Statistics & Probability Letters, Elsevier, vol. 75(2), pages 77-85, November.
  • Handle: RePEc:eee:stapro:v:75:y:2005:i:2:p:77-85
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00212-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas T. Longford, 2001. "Simulation‐based diagnostics in random‐coefficient models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(2), pages 259-273.
    2. J. S. Hodges, 1998. "Some algebra and geometry for hierarchical models, applied to diagnostics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 497-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Francis & Jiayi Liu, 2015. "Modelling escalation in crime seriousness: a latent variable approach," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 277-297, August.
    2. B. N. Sánchez & E. A. Houseman & L. M. Ryan, 2009. "Residual-Based Diagnostics for Structural Equation Models," Biometrics, The International Biometric Society, vol. 65(1), pages 104-115, March.
    3. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Andres Houseman & Louise Ryan & Brent Coull, 2004. "Cholesky Residuals for Assessing Normal Errors in a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1019, Berkeley Electronic Press.
    2. Shi, Lei & Chen, Gemai, 2012. "Deletion, replacement and mean-shift for diagnostics in linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 202-208, January.
    3. Andrew Gelman & Iain Pardoe, 2004. "Bayesian measures of explained variance and pooling in multilevel (hierarchical) models," EERI Research Paper Series EERI_RP_2004_04, Economics and Econometrics Research Institute (EERI), Brussels.
    4. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    5. Liying Luo & James S. Hodges, 2016. "Block Constraints in Age–Period–Cohort Models with Unequal-width Intervals," Sociological Methods & Research, , vol. 45(4), pages 700-726, November.
    6. B. Arendacká & S. Puntanen, 2015. "Further remarks on the connection between fixed linear model and mixed linear model," Statistical Papers, Springer, vol. 56(4), pages 1235-1247, November.
    7. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    8. He, Yi & Hodges, James S., 2008. "Point estimates for variance-structure parameters in Bayesian analysis of hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2560-2577, January.
    9. James Bennett & Jon Wakefield, 2001. "Errors-in-Variables in Joint Population Pharmacokinetic/Pharmacodynamic Modeling," Biometrics, The International Biometric Society, vol. 57(3), pages 803-812, September.
    10. Duarte Nubia E. & Giolo Suely R. & Pereira Alexandre C. & de Andrade Mariza & Soler Júlia P., 2014. "Using the theory of added-variable plot for linear mixed models to decompose genetic effects in family data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 359-378, June.
    11. Lisa Henn & James S. Hodges, 2014. "Multiple Local Maxima in Restricted Likelihoods and Posterior Distributions for Mixed Linear Models," International Statistical Review, International Statistical Institute, vol. 82(1), pages 90-105, April.
    12. Ahmed Bani-Mustafa & K. M. Matawie & C. F. Finch & Amjad Al-Nasser & Enrico Ciavolino, 2019. "Recursive residuals for linear mixed models," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1263-1274, May.
    13. Schützenmeister, André & Piepho, Hans-Peter, 2012. "Residual analysis of linear mixed models using a simulation approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1405-1416.
    14. Andrew Gelman & Iven Van Mechelen & Geert Verbeke & Daniel F. Heitjan & Michel Meulders, 2005. "Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data," Biometrics, The International Biometric Society, vol. 61(1), pages 74-85, March.
    15. Wei, Wen Hsiang & Fung, Wing Kam, 1999. "The mean-shift outlier model in general weighted regression and its applications," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 429-441, June.
    16. Chengcheng Hao & Dietrich Rosen & Tatjana Rosen, 2014. "Local Influence Analysis in AB–BA Crossover Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1153-1166, December.
    17. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    18. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    19. McQuestion, Michael J. & Velasquez, Anibal, 2006. "Evaluating program effects on institutional delivery in Peru," Health Policy, Elsevier, vol. 77(2), pages 221-232, July.
    20. C. Fernandez & M. F. J. Steel, 1999. "Some comments on model development and posterior existence," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 89-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:75:y:2005:i:2:p:77-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.