IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v75y2005i2p103-112.html
   My bibliography  Save this article

On estimation of the dimensionality in linear canonical analysis

Author

Listed:
  • Nkiet, Guy Martial

Abstract

Using a penalization of a statistic based on eigenvalues, we introduce a direct estimation method for the dimensionality in linear canonical analysis. Consistency of the resulting estimator is established and simulations show its finite sample performances.

Suggested Citation

  • Nkiet, Guy Martial, 2005. "On estimation of the dimensionality in linear canonical analysis," Statistics & Probability Letters, Elsevier, vol. 75(2), pages 103-112, November.
  • Handle: RePEc:eee:stapro:v:75:y:2005:i:2:p:103-112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00215-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glynn, William J. & Muirhead, Robb J., 1978. "Inference in canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 468-478, September.
    2. Bai, Z. D. & He, Xuming, 2004. "A chi-square test for dimensionality with non-Gaussian data," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 109-117, January.
    3. Seo, T. & Kanda, T. & Fujikoshi, Y., 1995. "The Effects of Nonnormality of Tests for Dimensionality in Canonical Correlation and MANOVA Models," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 325-337, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guy Nkiet, 2008. "Consistent estimation of the dimensionality in sliced inverse regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 257-271, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    2. Calinski, Tadeusz & Lejeune, Michel, 1998. "Dimensionality in Manova Tested by a Closed Testing Procedure," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 181-194, May.
    3. Ogasawara, Haruhiko, 2007. "Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1726-1750, October.
    4. Šárka Hudecová & Miroslav Šiman, 2021. "Testing symmetry around a subspace," Statistical Papers, Springer, vol. 62(5), pages 2491-2508, October.
    5. Boik, Robert J., 1998. "A Local Parameterization of Orthogonal and Semi-Orthogonal Matrices with Applications," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 244-276, November.
    6. Gonzalo Camba-Mendez & George Kapetanios, 2005. "Statistical Tests of the Rank of a Matrix and Their Applications in Econometric Modelling," Working Papers 541, Queen Mary University of London, School of Economics and Finance.
    7. Gonzalo Camba-Mendez & George Kapetanios, 2005. "Statistical Tests of the Rank of a Matrix and Their Applications in Econometric Modelling," Working Papers 541, Queen Mary University of London, School of Economics and Finance.
    8. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    9. Gunderson, Brenda K. & Muirhead, Robb J., 1997. "On Estimating the Dimensionality in Canonical Correlation Analysis," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 121-136, July.
    10. Butler, Ronald W. & Wood, Andrew T.A., 2005. "Laplace approximations to hypergeometric functions of two matrix arguments," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 1-18, May.
    11. Bura, E. & Yang, J., 2011. "Dimension estimation in sufficient dimension reduction: A unifying approach," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 130-142, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:75:y:2005:i:2:p:103-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.