IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v6y1988i6p433-439.html
   My bibliography  Save this article

Large deviations and estimation in infinite-dimensional models

Author

Listed:
  • Hall, W. J.
  • Huang, Wei-Min

Abstract

Consider a random sample from a statistical model with an unknown, and possibly infinite-dimensional, parameter - e.g., a nonparametric or semiparametric model - and a real-valued functional T of this parameter which is to be estimated. The objective is to develop bounds on the (negative) exponential rate at which consistent estimates converge in probability to T, or, equivalently, lower bounds for the asymptotic effective standard deviation of such estimates - that is, to extend work of R.R. Bahadur from parametric models to more general (semiparametric and nonparametric) models. The approach is to define a finite-dimensional submodel, determine Bahadur's bounds for a finite-dimensional model, and then 'sup' or 'inf' the bounds with respect to ways of defining the submodels; this can be construed as a 'directional approach', the submodels being in a specified 'direction' from a specific model. Extension is made to the estimation of vector-valued and infinite-dimensional functionals T, by expressing consistency in terms of a distance, or, alternatively, by treating classes of real functionals of T. Several examples are presented.

Suggested Citation

  • Hall, W. J. & Huang, Wei-Min, 1988. "Large deviations and estimation in infinite-dimensional models," Statistics & Probability Letters, Elsevier, vol. 6(6), pages 433-439, May.
  • Handle: RePEc:eee:stapro:v:6:y:1988:i:6:p:433-439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(88)90104-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:6:y:1988:i:6:p:433-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.