IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v6y1988i6p427-432.html
   My bibliography  Save this article

Asymptotically efficient estimation of the sparsity function at a point

Author

Listed:
  • Welsh, A. H.

Abstract

The sparsity function is important in nonparametric inference based on order statistics. In this paper, we consider kernel estimation of the sparsity function. We establish an invariance principle for the kernel estimator and then construct a simple adaptive estimator which we show is asymptotically efficient in the mean squared error sense.

Suggested Citation

  • Welsh, A. H., 1988. "Asymptotically efficient estimation of the sparsity function at a point," Statistics & Probability Letters, Elsevier, vol. 6(6), pages 427-432, May.
  • Handle: RePEc:eee:stapro:v:6:y:1988:i:6:p:427-432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(88)90103-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasha Andreyanov & Grigory Franguridi, 2021. "Nonparametric inference on counterfactuals in first-price auctions," Papers 2106.13856, arXiv.org, revised Oct 2024.
    2. Yao Luo & Yuanyuan Wan, 2018. "Integrated-Quantile-Based Estimation for First-Price Auction Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 173-180, January.
    3. Wei, Ying & Carroll, Raymond J., 2009. "Quantile Regression With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1129-1143.
    4. Dilanka S. Dedduwakumara & Luke A. Prendergast & Robert G. Staudte, 2021. "Some confidence intervals and insights for the proportion below the relative poverty line," SN Business & Economics, Springer, vol. 1(10), pages 1-22, October.
    5. Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:6:y:1988:i:6:p:427-432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.