IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v68y2004i4p421-427.html
   My bibliography  Save this article

Asymptotic distribution of test statistic for the covariance dimension reduction methods in regression

Author

Listed:
  • Yin, Xiangrong
  • Dennis Cook, R.

Abstract

Yin and Cook (J. Roy. Statist. Soc. Ser. B Part 2 64 (2002) 159) recently introduced a new dimension reduction method for regression called Covk. Here, we develop the asymptotic distribution of the Covk test statistic for dimension under weak assumptions. This serves as an analytic counterpart to the permutation test suggested by Yin and Cook.

Suggested Citation

  • Yin, Xiangrong & Dennis Cook, R., 2004. "Asymptotic distribution of test statistic for the covariance dimension reduction methods in regression," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 421-427, July.
  • Handle: RePEc:eee:stapro:v:68:y:2004:i:4:p:421-427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00132-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    2. Eaton, M. L. & Tyler, D., 1994. "The Asymptotic Distribution of Singular-Values with Applications to Canonical Correlations and Correspondence Analysis," Journal of Multivariate Analysis, Elsevier, vol. 50(2), pages 238-264, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    2. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    3. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    4. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    6. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    7. Charles Lindsey & Simon Sheather & Joseph McKean, 2014. "Using sliced mean variance–covariance inverse regression for classification and dimension reduction," Computational Statistics, Springer, vol. 29(3), pages 769-798, June.
    8. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    9. F. Chiaromonte, 1997. "A Reduction Paradigm for Multivariate Laws," Working Papers ir97015, International Institute for Applied Systems Analysis.
    10. Yin, Xiangrong & Cook, R. Dennis, 2006. "Dimension reduction via marginal high moments in regression," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 393-400, February.
    11. Yoo, Jae Keun, 2008. "Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1825-1839, September.
    12. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
    13. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    14. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
    15. F. Chiaromonte, 1998. "On Multivariate Structures and Exhaustive Reductions," Working Papers ir98080, International Institute for Applied Systems Analysis.
    16. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    17. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    18. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    19. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    20. Yoo, Jae Keun, 2013. "Advances in seeded dimension reduction: Bootstrap criteria and extensions," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:68:y:2004:i:4:p:421-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.