Asymptotics of the Lp-norms of density estimators in the first-order autoregressive models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Horváth, Lajos & Zitikis, Ricardas, 2003. "Asymptotics of the Lp-norms of density estimators in the first-order autoregressive models," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 331-342, December.
References listed on IDEAS
- Lee, Sangyeol & Na, Seongryong, 2002. "On the Bickel-Rosenblatt test for first-order autoregressive models," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 23-35, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
- Cheng, Fuxia, 2018. "Glivenko–Cantelli Theorem for the kernel error distribution estimator in the first-order autoregressive model," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 95-102.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Fuxia & Sun, Shuxia, 2008. "A goodness-of-fit test of the errors in nonlinear autoregressive time series models," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 50-59, January.
- Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
- Bachmann, Dirk & Dette, Holger, 2005. "A note on the Bickel-Rosenblatt test in autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 221-234, October.
- Nadine Hilgert & Bruno Portier, 2012. "Strong uniform consistency and asymptotic normality of a kernel based error density estimator in functional autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 15(2), pages 105-125, July.
- Cheng, Fuxia, 2018. "Glivenko–Cantelli Theorem for the kernel error distribution estimator in the first-order autoregressive model," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 95-102.
More about this item
Keywords
AR(1) processes Stationary processes Residuals Lp-norms;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:66:y:2004:i:2:p:91-103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.