IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v64y2003i4p369-379.html
   My bibliography  Save this article

Factorization of posteriors and partial imputation algorithm for graphical models with missing data

Author

Listed:
  • Geng, Zhi
  • Li, Kaican

Abstract

In this paper, we discuss factorization of a posterior distribution and present a partial imputation algorithm for a graphical model with incomplete data. We use an ordinary graph to represent a graphical model and introduce a hypergraph to represent an observed data pattern where each hyperedge is a set of variables observed for a group of individuals. First, in terms of a decomposition of such a mixed graph, we discuss factorization of a joint posterior distribution into several marginal posterior distributions so that calculation of posterior distribution can be localized. Then, for a mixed graph which cannot be decomposed without loss of information, we present a partial imputation algorithm which imputes only a part of missing data and reduces unnecessary imputation of an ordinary Gibbs sampler. Finally, we discuss the efficiency improved by a decomposition and the partial imputation algorithm.

Suggested Citation

  • Geng, Zhi & Li, Kaican, 2003. "Factorization of posteriors and partial imputation algorithm for graphical models with missing data," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 369-379, October.
  • Handle: RePEc:eee:stapro:v:64:y:2003:i:4:p:369-379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00181-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Geng & Kang Wan & Feng Tao, 2000. "Mixed Graphical Models with Missing Data and the Partial Imputation EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 433-444, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Zhi & Wang, Chi & Zhao, Qiang, 2005. "Decomposition of search for v-structures in DAGs," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 282-294, October.
    2. Ng, Kai Wang & Tang, Man-Lai & Tan, Ming & Tian, Guo-Liang, 2008. "Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 490-509, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geng, Zhi & He, Yang-Bo & Wang, Xue-Li & Zhao, Qiang, 2003. "Bayesian method for learning graphical models with incompletely categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 175-192, October.
    2. Tang, Man-Lai & Wang Ng, Kai & Tian, Guo-Liang & Tan, Ming, 2007. "On improved EM algorithm and confidence interval construction for incomplete rxc tables," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2919-2933, March.
    3. Geng, Zhi & Wang, Chi & Zhao, Qiang, 2005. "Decomposition of search for v-structures in DAGs," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 282-294, October.
    4. Kuroda, Masahiro & Sakakihara, Michio, 2006. "Accelerating the convergence of the EM algorithm using the vector [epsilon] algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1549-1561, December.
    5. Ng, Kai Wang & Tang, Man-Lai & Tan, Ming & Tian, Guo-Liang, 2008. "Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 490-509, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:64:y:2003:i:4:p:369-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.