IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v62y2003i2p145-154.html
   My bibliography  Save this article

Indistinguishability of absolutely continuous and singular distributions

Author

Listed:
  • Lalley, Steven P.
  • Nobel, Andrew

Abstract

It is shown that there are no consistent decision rules for the hypothesis testing problem of distinguishing between absolutely continuous and purely singular probability distributions on the real line. In fact, there are no consistent decision rules for distinguishing between absolutely continuous distributions and distributions supported by Borel sets of Hausdorff dimension 0. It follows that there is no consistent sequence of estimators of the Hausdorff dimension of a probability distribution.

Suggested Citation

  • Lalley, Steven P. & Nobel, Andrew, 2003. "Indistinguishability of absolutely continuous and singular distributions," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 145-154, April.
  • Handle: RePEc:eee:stapro:v:62:y:2003:i:2:p:145-154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00003-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Yulia Kotlyarova & Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2021. "Rates of Expansions for Functional Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 121-139, December.
    3. Victoria Zinde-Walsh, 2008. "Consequences of lack of smoothness in nonparametric estimation (in Russian)," Quantile, Quantile, issue 4, pages 57-69, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:62:y:2003:i:2:p:145-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.