IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v62y2003i1p71-77.html
   My bibliography  Save this article

Functional local law of the iterated logarithm for geometrically weighted random series

Author

Listed:
  • Stoica, George

Abstract

The paper proves a functional local law of the iterated logarithm and a moderate deviation principle for properly normalized geometrically weighted random series of centered independent normal real random variables with variances satisfying Kolmogorov's conditions. The methodology used here allows an unified treatment, extends and gives the exact rate of convergence in the pointwise laws previously proved by Zhang (Ann. Probab. 25 (1997) 1621) and Bovier and Picco (Ann. Probab. 21 (1993) 168).

Suggested Citation

  • Stoica, George, 2003. "Functional local law of the iterated logarithm for geometrically weighted random series," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 71-77, March.
  • Handle: RePEc:eee:stapro:v:62:y:2003:i:1:p:71-77
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00426-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuqing Gao & Yunshi Gao & Xianjie Xia, 2024. "Asymptotic Behaviors for Random Geometric Series," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2818-2842, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:62:y:2003:i:1:p:71-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.