IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v5y1987i1p55-63.html
   My bibliography  Save this article

Probability estimation via smoothing in sparse contingency tables with ordered categories

Author

Listed:
  • Simonoff, Jeffrey S.

Abstract

Probability estimation in sparse two-dimensional contingency tables with ordered categories is examined. Several smoothing procedures are compared to analysis of the unsmoothed table. It is shown that probability estimates obtained via maximum penalized likelihood smoothing are consistent under a sparse asymptotic framework if the underlying probability matrix is smooth, and are more accurate than kernel-based and other smoothing techniques. In fact, computer simulations indicate that smoothing based on a product kernel is less effective than no smoothing at all. An example is given to illustrate the smoothing technique. Possible extensions to model building and higher dimensional tables are discussed.

Suggested Citation

  • Simonoff, Jeffrey S., 1987. "Probability estimation via smoothing in sparse contingency tables with ordered categories," Statistics & Probability Letters, Elsevier, vol. 5(1), pages 55-63, January.
  • Handle: RePEc:eee:stapro:v:5:y:1987:i:1:p:55-63
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(87)90027-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burman, Prabir, 2004. "On some testing problems for sparse contingency tables," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 1-18, January.
    2. Granville, Vincent, 1996. "Discriminant analysis and density estimation on the finite d-dimensional grid," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 27-51, June.
    3. Bartolucci, F. & Scaccia, L., 2004. "Testing for positive association in contingency tables with fixed margins," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 195-210, August.
    4. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    5. Faisal Maqbool Zahid & Gerhard Tutz, 2013. "Proportional Odds Models with High‐Dimensional Data Structure," International Statistical Review, International Statistical Institute, vol. 81(3), pages 388-406, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:5:y:1987:i:1:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.